Что такое фьюзы в микроконтроллере
Перейти к содержимому

Что такое фьюзы в микроконтроллере

  • автор:

Фьюзы микроконтроллеров AVR – как и с чем их едят

Что же такое FUSE биты? Слова вроде бы знакомые, но многие толком и не знают их предназначение, ставят галочки и прошивают, работает устройство да и ладно. Я вам хочу рассказать немного про эти FUSE биты.

FUSE биты (фьюзы) – ну если по простому, то они настраивают определенные параметры микроконтроллеров, это некий инструмент для их тонкой настройки Фьюзы включают или настраивают такие параметры как:
— частота генератора, внешний или внутренний генератор
— запрет на чтение прошивки микроконтроллера
— включение или выключение таймеров
— деление частоты кварцевого генератора
— защита EEPROOM от стирания
…и так далее. У каждого микроконтроллера выставляются свои фьюзы, у разных микроконтроллеров разный список фьюзов, например в ATmega8 нет фьюза CKOUT, но он присутствует в ATtiny2313. В даташитах к микроконтроллерам все эти фьюзы расписаны.

Главное правило при работе с фьюзами – не торопиться их выставлять, если вы точно не уверены в правильности своих действий.

Теперь распишем названия некоторых фьюзов, их обозначения и то, на что они влияют. Вообще, есть фьюзы для защиты программы от копирования (лок-биты), фьюзы, устанавливающие определенные функции, а так же так называемые «старшие» и «младшие» байты. Самый популярный фьюз, который выставляется практически всегда, это:

CKSEL , таких фьюзов с разными буквами всего четыре, это группа CKSEL 0, CKSEL 1, CKSEL 2 и CKSEL 3 , определяют частоту тактового генератора, и его тип, тактовые импульсы необходимы для работы практически любого микроконтроллера. Во многих микроконтроллерах есть внутренний генератор, но мы можем подключить внешний и фьюзы выставить для работы от внешнего генератора. Внешний кварцевый резонатор подключается на выводы XTAL 1 и XTAL 2 , кроме того припаивается пара конденсаторов

20пф одним концом на кварц, другим на минус. Если допустить ошибку при установке этих фьюзов, то микроконтроллер может «заблокироваться» для того чтобы восстановить контроллер, подают тактовый сигнал на ногу XTAL1, на данный момент придумано не мало схем для восстановления контроллеров, залоченных таким образом. Этот генератор можно сделать практически из любой логики или даже из таймера 555.

Схема генератора

Есть простые схемы, с использованием 1 транзистора, пары резисторов и кварцевого резонатора, и более сложные, на микросхемах типа К155ЛА3. Данные способы 100% оживляют контроллеры с таким дефектом

Группа фьюзов SUT1 и SUT0 — fuse биты, управляющие режимом запуска тактовых генераторов МК, а так же задают скорость старта МК после подачи питания. Связаны с фьюзами CKSEL, а именно CKSEL0.

CKOPT — бит, определяет работу встроенного генератора для работы с кварцевыми резонаторами, устанавливает «амплитуду» колебаний тактового сигнала на кварце. Данный бит программируется достаточно часто.

RSTDISBL – очень опасный фьюз, ошибочная установка может отключить вывод RESET, после чего пропадет возможность программирования ISP программатором. Бит RSTDISBL превращает вывод RESET в порт ввода-вывода.

SPIEN – фьюз, который разрешает работу МК по интерфейсу SPI. Все микроконтроллеры выпускаются с уже установленным битом SPIEN. Считается опасным фьюзом.

EESAVE — Удобно читать как EEPROOM SAVE, дословно означает «сохранить EEPROOM», данный фьюз защищает EEPROM от стирания. Например когда в очередной раз заливаете прошивку в контроллер, можно поставить EESAVE = 0, и при стирании МК EEPROOM останется не тронутым.

BOOTSZ , состоит из группы битов BOOTSZ1 и BOOTSZ0, определяют размер области памяти записываемых программ, связан с битом BOOTRST.

BOOTRST, определяет адрес, с которого и будет начато исполнение программы. Если бит установлен т.е. если BOOTRST = 0, то начало программы будет с адреса области загрузчика (Boot Loader).

BODEN — бит, который при выставлении (BODEN=0), будет контролировать за питающим напряжением, на предельно низких напряжениях микроконтроллер может перезапускаться, глючить и так далее. Связан с BODLEVEL.

BODLEVEL . — определяет момент срабатывания детектора уровня питающего напряжения, при снижении напряжения питания ниже уровня, произойдет «перезагрузка» контроллера.

SELFPRGEN — бит, который разрешает (SELFPRGEN=0) или запрещает (SELFPRGEN =1) программе производить запись в память.

OCDEN – данный фьюз разрешает или запрещает чтение программы из памяти контроллера.

Я как то упоминал в своих статьях про то, что в некоторых программах фьюзы выставляются зеркально. Запомните, запрограммированный фьюз=0 , а не запрограммированный=1. В программах Algorithm Builder, UniProf фьюзы выставляются одним образом, а в программах PonyProg, CodeVisionAVR, AVR Studio, SinaProg и некоторых других, фьюзы нужно выставлять зеркально по сравнению с предыдущим списком программ.

Уже давно на просторах Интернета появились так называемые «калькуляторы фьюзов», это специальные приложения, призванные помочь в конфигурировании микроконтроллера. Приложение интуитивно понятное, думаю разберетесь, в списке контроллеров выбираем нужный нам МК, далее выбираем необходимые функции, а ниже выставляются галочки фьюзов, все очень просто.

beginner92-2.png

Данные приложения очень удобны, т.к. например в последнее время очень часто авторы своих проектов значения фьюзов пишут непонятными буквами или цифрами, или же словами, новичку не понятно, что это значит и какие фьюзы при этом нужно выставлять, (часто можно встретить комментарий к статье «а какие фьюзы выставлять?»). Калькулятор фьюзов нам в этом плане очень сильно помогает.

beginner92-3.png

Думаю что теперь, если у вас спросят «что такое фьюзы, и зачем они нужны?», вы сможете объяснить человеку их назначение, а пока, на этом все!

Романов. А.С. Опубликована: 2012 г. 0 3

Про Ардуино и не только

Что такое фьюзы

Сегодня я хочу рассказать о том, что такое фьюзы, за что они отвечают и как их можно прочитать и записать в Ардуино. Рекомендую также заглянуть в предыдущую публикацию, т.к. работа с фьюзами возможна только через программатор.

Фьюзы (от английского Fuse bits) — это конфигурационные биты микроконтроллера, отвечающие за его предварительную настройку. Эти биты расположены в отдельном адресном пространстве, доступном только при программировании. Биты объединяются в конфигурационные байты и их состав зависит от конкретной модели микроконтроллера.

При работе с конфигурационными битами нужно помнить один важный момент: если бит содержит логическую единицу, то это означает что он не запрограммирован, соответственно, запрограммированный конфигурационный бит содержит логический ноль. Такая логика основана на принципе хранения данных в EEPROM: чистая микросхема памяти содержит во всех ячейках единицы, а термин запрограммирована по отношению к такой ячейке означает, что в нее записали ноль.

Фьюзы ATmega328 / ATmega328p

Микроконтроллеры ATmega328 и ATmega328p, на базе которых построено большинство плат семейства Ардуино, имеют 3 байта конфигурации: младший, старший и дополнительный. Их описание приведено ниже в таблицах.

Младший конфигурационный байт ATmega328/P

Номер бита Навание Описание Значение по умолчанию
7 CKDIV8 Divide clock by 8 0 (запрограммирован)
6 CKOUT Clock output 1 (не запрограммирован)
5 SUT1 Select start-up time 1 (не запрограммирован)
4 SUT0 Select start-up time 0 (запрограммирован)
3 CKSEL3 Select Clock source 0 (запрограммирован)
2 CKSEL2 Select Clock source 0 (запрограммирован)
1 CKSEL1 Select Clock source 1 (не запрограммирован)
0 CKSEL0 Select Clock source 0 (запрограммирован)

Старший конфигурационный байт ATmega328/P

Номер бита Навание Описание Значение по умолчанию
7 RSTDISBL External Reset Disable 1 (не запрограммирован)
6 DWEN debugWIRE Enable 1 (не запрограммирован)
5 SPIEN Enable Serial Program and Data Downloading 0 (запрограммирован)
4 WDTON Watchdog Timer Always On 1 (не запрограммирован)
3 EESAVE EEPROM memory is preserved through the Chip Erase 1 (не запрограммирован)
2 BOOTSZ1 Select Boot Size 0 (запрограммирован)
1 BOOTSZ0 Select Boot Size 0 (запрограммирован)
0 BOOTRST Select Reset Vector 0 (запрограммирован)

Дополнительный конфигурационный байт ATmega328/P

Номер бита Навание Описание Значение по умолчанию
7 1
6 1
5 1
4 1
3 1
2 BODLEVEL2 Brown-out Detector trigger level 1 (не запрограммирован)
1 BODLEVEL1 Brown-out Detector trigger level 1 (не запрограммирован)
0 BODLEVEL0 Brown-out Detector trigger level 1 (не запрограммирован)

Таким образом, значения конфигурационных байтов в ATmega328/P по умолчанию: Low: 0x62, High: 0xD9, Extended: 0xFF. Обратите внимание, это значения именно для «чистого» микроконтроллера ATmega328/P , а не для Ардуино. Значения фьюзов для Ардуино можно найти в файле Arduino_dir\hardware\arduino\avr\Boards.txt, где Arduino_dir — это путь к IDE Arduino. Откройте файл в текстовом редакторе и найдите интересующую плату по названию, чуть ниже будет информация о фьюзах:

uno.name=Arduino/Genuino Uno
.
uno.bootloader.low_fuses=0xFF
uno.bootloader.high_fuses=0xDE
uno.bootloader.extended_fuses=0x05

Для расшифровки шестнадцатеричных значений конфигурационных байтов удобно использовать онлайн калькулятор Engbedded Atmel AVR® Fuse Calculator:

Engbedded Atmel AVR® Fuse Calculator

Выберите модель микроконтроллера и введите значения фьюзов в соответствующие поля внизу страницы в разделе Current settings — введенные значения будут моментально расшифрованы и представлены в удобном виде. И, наоборот, можно изменить конфигурацию битов в разделах Manual fuse bits configuration и Feature configuration и получить значения конфигурационных байтов для записи в микроконтроллер.

Рассмотрим назначение конфигурационных битов более подробно.

CKDIV8
CKOUT

Конфигурационные биты SUT совместно с битами CKSEL определяют длительность задержки при старте микроконтроллера. Задержка необходима для того, чтобы источник тактовой частоты стабилизировался после подачи питания и вошел в свой рабочий режим. Величина задержки зависит от выбранного источника и составляет от 0 до 65мс. Конкретные значения можно найти в даташите.

CKSEL

Современные микроконтроллеры способны работать с различными источниками тактового сигнала. Выбор источника осуществляется установкой конфигурационных битов CKSEL. В таблице ниже приведены источники тактового сигнала, поддерживаемые микроконтроллерами ATmega328 / ATmega328P, и соответствующие им значения CKSEL.

Источник тактового сигнала Значение CKSEL3..0
Экономичный кварцевый генератор 1111-1000
Кварцевый генератор 0111-0110
Низкочастотный кварцевый генератор 0101-0100
Внутренний RC-генератор на 128кГц 0011
Внутренний калиброванный RC-генератор 0010
Внешний сигнал синхронизации 0000
Зарезервировано 0001
RSTDISBL

Фьюз RSTDISBL управляет работой цифрового вывода микроконтроллера, совмещенного с входом внешнего сброса. Если RSTDISBL запрограммирован, то вывод может быть использован как обычный цифровой пин ввода/вывода. Если фьюз RSTDISBL не запрограммирован, то вывод используется для внешнего сигнала сброса: низкий уровень напряжения на нем приводит к генерации сигнала сброса микроконтроллера. Отключение внешнего сброса может быть оправдано при работе с микроконтроллерами, имеющими небольшое количество выводов, в других случаях лучше не трогать этот фьюз.

Все что нужно знать о Fuse- и Lock-битах AVR микроконтроллеров

Установка Fuse- и Lock-битов (битов конфигурации и блокировки) микроконтроллеров (МК) семейства Atmel AVR, особенно для начинающих, является достаточно сложной задачей и не редко может вызывать путаницу при настройке и программировании МК. Если вы какой-то бит пропустили или установили неверно, это может привести к неправильной работе программы или, что еще хуже, к невозможности запрограммировать МК внутрисхемно по последовательному интерфейсу.

Несмотря на то, что в технической документации на каждый МК дается исчерпывающая информация по Fuse- и Lock-битам, новички часто чувствуют себя несколько неуверенно перед выполнением команды записи битов конфигурации и блокировки. В статье мы рассмотрим основные особенности битов конфигурации МК семейства AVR.

Fuse- и Lock-биты

Перед тем как мы приступим к подробному разбору битов конфигурации, нужно уяснить и запомнить один момент:

  • Fuse-бит = 1, означает, что он незапрограммирован (сброшен, неактивен);
  • Fuse-бит = 0, означает, что он запрограммирован (установлен, активен).

Это один из основных источников возникающей путаницы в процессе программирования Fuse- и Lock-битов. Мы привыкли думать, что установить значение какого-либо параметра означает записать 1, верно? С Fuse-битами AVR – наоборот, установка какого-либо бита означает запись 0, и это нужно помнить.

Биты конфигурации расположены в отдельной области энергонезависимой памяти. К примеру, МК ATmega328P имеет четыре конфигурационных байта, которые необходимо запрограммировать для корректного функционирования. Один из этих байтов содержит биты блокировки, оставшиеся три (часто именуемые старший, младший и расширенный) – содержат конфигурационные биты. Этот набор битов устанавливает начальные настройки МК: источник тактового сигнала, область загрузчика, функционирование аппаратного сброса, сторожевого таймера и пр. Сначала мы рассмотрим биты блокировки (Рисунок 1).

Рисунок 1. Lock-биты микроконтроллеров AVR.

В зависимости от типа микроконтроллера AVR количество Lock-битов может быть различным, но два младших бита всегда присутствуют. Биты LB1 и LB2 используются для блокировки доступа к встроенной Flash-памяти. Вы, наверное, знаете, что разработчики каких-либо устройств практически всегда блокируют чтение прошивки МК, чтобы защитить свою интеллектуальную собственность и предотвратить создание дубликатов и подделок. Чтение заблокированного микроконтроллера – это как конфета для аппаратных хакеров, но это отдельная тема. Так, если нужно защитить свою прошивку от копирования, необходимо заблокировать содержимое памяти микроконтроллера, в противном случае оставьте биты без изменения. Другие биты блокировки (BLB01, BLB02, BLB11 и BLB11) могут использоваться для блокировки записи/чтения в/из Flash-памяти, как из области приложения, так и из секции загрузчика. Биты блокировки довольно редко программируются (зависит от специфики приложения), мы не будем на них заострять внимание. Даже если вы запрограммируете любой из них – биты блокировки сбрасываются (устанавливаются в 1) во время выполнения команды полного стирания кристалла (Chip Erase).

Больше всего нас интересуют биты конфигурации, с ними вам придется иметь дело очень часто, хотите вы этого или нет. Расположение определенных Fuse-битов в трех байтах конфигурации отличается в зависимости от используемого МК. Для примера, мы рассмотрим ATmega328P, имеющий три байта конфигурации (Рисунок 2).

Младший байт конфигурации, расположение и наименование Fuse-битов микроконтроллера ATmega328P.

Младший байт конфигурации, расположение и наименование Fuse-битов микроконтроллера ATmega328P.

Посмотрите на состав младшего байта. Вы видите группу из 4 одинаковых битов CKSEL0, CKSEL1, CKSEL2, CKSEL3. Они используются для выбора типа источника тактовых сигналов для микроконтроллера МК. По-умолчанию (заводские установки) микроконтроллер настроен на работу от внутреннего RC осциллятора 8 МГц. Логически это самый безопасный вариант работы с микроконтроллером. Но, как известно, приборы семейства AVR могут работать от различных источников тактовой частоты:

  • калиброванный внутренний RC осциллятор (по умолчанию 8 МГц);
  • внешний RC осциллятор;
  • внешний керамический или кварцевый резонатор;
  • внешний низкочастотный кварц;
  • внешний источник тактового сигнала.

Для каждого из представленных режимов тактирования имеется диапазон установок Fuse-битов CKSEL0..3, которые используются для управления частотой тактового генератора и временем выхода микроконтроллера на рабочий режим из режима пониженного энергопотребления. Эти биты тесно связаны с битами SUT0 и SUT1, фактически управляющими временем запуска микроконтроллера после подачи питания. Задержка запуска необходима для стабилизации генерации керамических резонаторов и кварцев. Точные значения времени выхода микроконтроллера на рабочий режим приводятся в технической документации.

Конфигурационный бит CKOUT разрешает/запрещает вывод тактовой частоты на один из выводов МК; для ATmega328P на вывод PORTB0 (для тактирования других устройств), причем независимо от того, какой используется источник тактирования МК. Если бит запрограммирован, то для пользовательского приложения основная и альтернативные функции порта PB0 недоступны.

Последний бит в младшем байте – CKDIV8. По умолчанию этот бит установлен, что означает подключение к внутреннему RC осциллятору 8 МГц делителя частоты с коэффициентом 8, поэтому системная тактовая частота МК в этом случае будет равна 1 МГц. Если вам нужна тактовая частота 8 МГц, бит CKDIV8 нужно сбросить.

Теперь акцентируем внимание на старшем конфигурационном байте.

Первый бит – BOOTRST, который по умолчанию сброшен. Если этот бит установить, то после подачи питания на микроконтроллер или после сброса микроконтроллер начнет выполнение программы из загрузочного сектора. Проще говоря, если в приложении требуется выполнение функций загрузчика из Flash-памяти, то этот бит нужно запрограммировать. Если необходимо просто запрограммировать микроконтроллер по внутрисхемному интерфейсу, то можно оставить этот бит нетронутым.

При использовании загрузчика немаловажное значение приобретают биты BOOTSZ0 и BOOTSZ1. Они задают область Flash-памяти для загрузчика. Если программный код загрузчика вашего приложения имеет маленький объем, то с помощью битов конфигурации можно выделить область Flash-памяти меньшего размера для загрузчика, а остальное оставить для приложения.

Следующий бит EESAVE. Если его запрограммировать (0), то содержимое энергонезависимой памяти данных EEPROM останется нетронутым во время процедуры стирания кристалла (Chip Erase). В большинстве случаев это полезная функция, например, когда в EEPROM хранятся важные данные или калибровочные параметры и необходимо выполнить обновление прошивки, то перед заменой прошивки запрограммируйте бит EESAVE.

После установки бита WDTON сторожевой таймер микроконтроллера включается сразу после подачи питания, и выключить программно его невозможно. В этом случае сторожевой таймер будет постоянно выполнять свою функцию периодического сброса микроконтроллера, если в коде программы не выполнять специальную команду сброса сторожевого таймера. Если бит WDTON не установлен, то включение/отключение сторожевого таймера осуществляется программно.

Бит SPIEN предназначен для отключения последовательного интерфейса программирования микроконтроллера. На самом деле вы не сможете изменить состояние этого бита используя последовательный интерфейс (МК AVR поддерживают еще два режима параллельного программирования), но известны случаи изменения состояния бита SPIEN при некорректной работе или сбое внутрисхемного программатора.

Аналогичная ситуация с битом RSTDSBL – он используется для отключения функции аппаратного сброса, другими словами вывод сброса МК используется как порт ввода/вывода. В некоторых ситуациях (МК с малым числом линий ввода/вывода) это очень удобно, но в целом не рекомендуется. Ошибочная установка бита RSTDSBL может лишить вас возможности программировать микроконтроллер по SPI, т. к. наличие сигнала сброса – обязательное условие включения режима программирования.

Бит DWEN используется для включения специального отладочного интерфейса DebugWire микроконтроллеров AVR. Изменить состояние битов SPIEN, RSTDSBL и DWEN по последовательному интерфейсу невозможно, для этого потребуется параллельный программатор с поддержкой высоковольтного режима программирования или подключение по интерфейсу DebugWire.

Следует отметить еще бит CKOPT в старшем байте конфигурации (в ATmega328P он отсутствует, но есть в других МК AVR), управляющий режимом работы усилителя тактового генератора. Если бит запрограммирован (0), то выходной сигнал тактового генератора имеет размах (амплитуду), равный напряжению питания. Использовать эту опцию можно, когда микроконтроллер будет работать в обстановке с высоким уровнем помех, а также когда планируется подключить еще один микроконтроллер к выводу XTAL2. В других случаях этот режим нужно отключить (CKOPT=1), поскольку увеличивается энергопотребление микроконтроллера, а это не приветствуется в устройствах с батарейным питанием.

Последний конфигурационный байт (расширенный). Для микроконтроллера Atmega328P в нем содержатся три бита: BODLEVEL0, BODLEVEL1, BODLEVEL2. Эти биты предназначены для установки порога срабатывания схемы детектора напряжения питания: когда напряжения питания достигнет установленного уровня, произойдет сброс микроконтроллера.

Калькулятор значений Fuse-битов

Когда вам потребуется запрограммировать новый МК, для установки Fuse-битов вы можете воспользоваться техническим описанием на микроконтроллер. Но есть более удобный и простой способ – калькулятор Fuse-битов – онлайн инструмент, разработанный Марком Хаммерлингом (Рисунок 3). Вы самостоятельно выбираете тип микроконтроллера и включаете/выключаете необходимые опции, а конфигурация Fuse-битов будет обновляться автоматически.

Рисунок 3. В онлайн калькуляторе Fuse-битов МК AVR пользователь может самостоятельно выбирать необходимые опции.

Кроме того, вы можете индивидуально устанавливать Fuse-биты в отдельной форме, значения младшего, старшего и расширенного байта конфигурации также будут обновляться автоматически (Рисунок 4), одновременно генерируются команды для программатора AVRDude.

Рисунок 4. При индивидуальной установке Fuse-битов значения байтов конфигурации обновляются автоматически.

Если у вас есть мобильный телефон или планшетный ПК с ОС Android, можно воспользоваться бесплатным приложением AVR Fuse Calculator, которое выполняет те же функции и генерирует команды для программатора AVRDude. В базе данных программы 144 МК AVR.

Биты защиты. Разбираем способы защиты микроконтроллеров

Ре­комен­дую озна­комить­ся с мо­ей прош­лой стать­ей, в которой более под­робно опи­саны мик­рокон­трол­леры, о которых говорит­ся ниже.

В семей­стве AVR для нас­трой­ки при­меня­ются фьюзы. Фьюзы (от англ. fuse — пре­дох­ранитель) — это осо­бые биты в мик­рокон­трол­лере, которые, как и все биты, хра­нят информа­цию. Их основные осо­бен­ности сле­дующие:

  • они хра­нят­ся и про­шива­ются отдель­но от осталь­ной памяти;
  • из­меня­ются толь­ко извне;
  • уп­равля­ют работой мик­рокон­трол­лера на самом низ­ком уров­не.

Луч­ше все­го их мож­но объ­яснить на при­мере дозимет­ра РКСБ-104.

Дозиметр РКСБ-104До­зиметр РКСБ-104

Ос­новная нас­трой­ка его выпол­нялась одним перек­лючате­лем на перед­ней панели. А вот более тон­кие нас­трой­ки тре­бова­ли снять защит­ную крыш­ку с зад­ней стен­ки и вос­поль­зовать­ся малень­кими перек­лючате­лями (белые посере­дине).

Задняя панель со снятой крышкойЗад­няя панель со сня­той крыш­кой

В AVR эти биты для удобс­тва соеди­няют­ся в бай­ты: стар­ший, млад­ший, защит­ный и допол­нитель­ный. К каж­дому биту мож­но получить дос­туп по прин­ципу байт → бит. Млад­ший байт обыч­но отве­чает за так­тирова­ние, а стар­ший — за плюш­ки. Биты отли­чают­ся от чипа к чипу, поэто­му с каж­дым чипом в иде­але сто­ит раз­бирать­ся отдель­но с помощью докумен­тации.

Зна­чение битов в этом семей­стве инверти­рова­но: 1 зна­чит, что бит стерт, а 0 — что уста­нов­лен. Но вот прог­раммы для про­шив­ки МК работа­ют по‑раз­ному. Для раз­ных прог­рамм нуж­но уточ­нять логику работы с фьюза­ми.

Что могут фьюзы в этом семей­стве МК:

  • уп­равле­ние так­тирова­нием (час­тота генера­тора, внеш­ний или внут­ренний генера­тор);
  • раз­решение на чте­ние про­шив­ки мик­рокон­трол­лера (самое инте­рес­ное, но об этом поз­же);
  • уп­равле­ние тай­мерами;
  • за­щита EEPROM;
  • бо­лее спе­цифич­ные фун­кции, их надо уточ­нять к кон­крет­ному чипу.

Са­мые «популяр­ные» биты:

  • CKSEL — их четыре, и они отве­чают за так­тирова­ние;
  • SUT — их два, и они управля­ют режимом запус­ка так­тирова­ния;
  • CKOPT — кон­фигури­рует внут­ренний генера­тор;
  • RSTDISBL — режим работы нож­ки RESET МК;
  • SPIEN — раз­решение SPI;
  • EESAVE — защита EEPROM;
  • BOOTRST — адрес, отку­да начать исполнять код;
  • BODEN — кон­троль питания;
  • SELFPRGEN — раз­решение записи в память изнутри;
  • OCDEN — вот он, бит, раз­реша­ющий чте­ние про­шив­ки.

Счи­тыва­ют фьюзы обыч­но не вруч­ную, а с помощью спе­циаль­ных каль­кулято­ров. Вот один из них — Fusecalc.

warning

При работе с фьюза­ми будь пре­дель­но вни­мате­лен. Неп­равиль­но выс­тавлен­ный бит может прев­ратить чип в «кир­пич». Перед про­шив­кой уточ­няй логику работы с фьюза­ми в тво­ей прог­рамме.

Linux

Я обыч­но работал с прог­раммой avrdude. При­веду пару команд без допол­нитель­ных парамет­ров (чип, прог­рамма­тор). Счи­тыва­ние про­шив­ки из чипа в файл:

Счи­тыва­ние энер­гонеза­виси­мой памяти в файл:

За­пись про­шив­ки из фай­ла в чип:

За­пись энер­гонеза­виси­мой памяти из фай­ла:

За­пись фьюзов ( 0xc3 -> lfuse ; 0x99 -> hfuse ):

Чте­ние фьюзов в фай­лы:

Есть допол­нитель­ные парамет­ры -с и -p . Пер­вый отве­чает за прог­рамма­тор, а вто­рой — за чип. В качес­тве при­мера — коман­да для про­шив­ки кон­трол­лера ATmega328p с помощью USBASP:

В коман­дах есть стран­ные стро­ки вида flash: w: flash_dump. hex . Это стро­ки в спе­циаль­ном фор­мате для avrdude . Для чего такое решение — не знаю ни я, ни кто‑либо еще.

Час­ти этих строк раз­делены дво­ето­чиями:

  • пер­вая часть — область памяти в МК (нап­ример, flash или lfuse );
  • вто­рая — нап­равле­ние ( w — write или r — read);
  • третья — файл на локаль­ном устрой­стве (нап­ример, файл с про­шив­кой);
  • пос­ледняя (опци­ональ­ная) — фор­мат фай­ла (нап­ример, r — raw или i — ihex, инте­лов­ский шес­тнад­цатерич­ный).

Бо­лее спе­цифич­ные слу­чаи при­мене­ния этой стро­ки выходят за рам­ки дан­ной статьи.

Windows

Окон­щики обыч­но поль­зуют­ся прог­рамма­ми с GUI. Нап­ример, AvrDude GUI.

Пер­вая вклад­ка пред­назна­чена для заг­рузки про­шив­ки. Мы видим и можем выб­рать целевое устрой­ство, фор­мат фай­лов про­шив­ки и пути к самим фай­лам. Один пред­назна­чен для прог­раммы, дру­гой — для энер­гонеза­виси­мой памяти.

Вто­рая вклад­ка кон­фигури­рует прог­рамма­тор: какая исполь­зует­ся модель и на каком пор­те она сидит.

Вклад­ка управле­ния защит­ными битами.

А вот наконец и фьюзы. Зада­ются они как бай­ты.

Как видишь, все прос­то, и исполь­зовать фьюзы мож­но, даже не откры­вая тер­минал!

На Arduino мож­но кон­фигури­ровать МК, не задумы­ваясь о работе фьюзов. Этим занима­ется Arduino IDE в авто­мати­чес­ком режиме.

В семей­стве STM для задания кон­фигура­ции исполь­зуют­ся биты в спе­циаль­ных регис­трах. Информа­цию об этих регис­трах и их наз­начении ищи в докумен­тации. Менять зна­чения этих регис­тров мож­но и нуж­но на ходу, но, в отли­чие от AVR, кон­фигури­рует­ся тут не толь­ко самое низ­коуров­невое (так­тирова­ние, нап­ример), но и вся­кая мел­кая перифе­рия.

Нас­тра­ивать надо мно­го, даже если про­ект в духе Hello world, поэто­му обыч­но это дела­ется не руч­ной записью регис­тров, а с помощью кра­сиво­го и мощ­ного соф­та.

Присоединяйся к сообществу «Xakep.ru»!

Членство в сообществе в течение указанного срока откроет тебе доступ ко ВСЕМ материалам «Хакера», позволит скачивать выпуски в PDF, отключит рекламу на сайте и увеличит личную накопительную скидку! Подробнее

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *