Электромагнитные волны ультрафиолетового диапазона имеют бoльшую длину волны чем радиоволны
Перейти к содержимому

Электромагнитные волны ультрафиолетового диапазона имеют бoльшую длину волны чем радиоволны

  • автор:

Задание №1 ЕГЭ по физике

Физический смысл изученных физических величин, законов и закономерностей.

1. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

1) Энергия упруго деформированной пружины прямо пропорциональна её удлинению.
2) Теплопередача путём электромагнитного излучения возможна только в атмосфере Земли и не наблюдается в вакууме.
3) При соединении двух разноимённо заряженных металлических шаров металлической проволокой перераспределение зарядов будет происходить до полного выравнивания потенциалов шаров.
4) Электромагнитные волны ультрафиолетового диапазона имеют бóльшую длину волны, чем радиоволны.
5) В нейтральном атоме суммарное количество электронов равно суммарному количеству протонов в ядре этого атома.

2. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

1) По мере удаления от Луны сила притяжения к ней убывает прямо пропорционально расстоянию до её центра.
2) В процессе изотермического сжатия постоянной массы газа его внутренняя энергия увеличивается.
3) При протекании постоянного электрического тока по проводнику количество теплоты, выделяющееся в нём за одно и то же время, прямо пропорционально квадрату силы тока.
4) Явления интерференции и дифракции могут наблюдаться для электромагнитных волн любого диапазона.
5) Через промежуток времени, равный периоду полураспада, нераспавшимися остаётся половина от большого количества изначально имевшихся радиоактивных ядер данного элемента.

3. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

1) Кинетическая энергия тела увеличивается прямо пропорционально скорости движения тела.
2) Теплопередача путём конвекции происходит за счёт переноса вещества в струях и потоках.
3) В процессе электризации трением два первоначально незаряженных тела приобретают одноимённые заряды.
4) При переходе электромагнитных волн через границу раздела двух сред с разными показателями преломления длина волны остаётся неизменной.
5) При альфа-распаде заряд ядра уменьшается на 2 элементарных положительных заряда.

4. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

1) Тело, форма и размеры которого при наличии внешних воздействий остаются неизменными, называется абсолютно твердым телом.
2) В процессе плавления постоянной массы вещества его внутренняя энергия увеличивается.
3) Одноимённые точечные электрические заряды притягиваются друг к другу.
4) Магнитное поле индукционного тока в контуре всегда увеличивает магнитный поток, изменение которого привело к возникновению этого индукционного тока.
5) При α-распаде ядро теряет примерно четыре атомные единицы массы, в результате появившийся в ходе реакции элемент смещается на две клетки влево в Периодической таблице Д.И. Менделеева.

5. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

1) Энергия характеризует способность тела совершать работу.
2) В цилиндре под поршнем расширение газа в ходе адиабатного процесса сопровождается понижением его температуры.
3) Если электрический ток протекает по алюминиевому проводнику, то ни при каких условиях не может наблюдаться действие тока на магнитную стрелку.
4) При изменении магнитного потока через площадку, охваченную замкнутым проводящим контуром, магнитное поле индукционного тока в контуре всегда увеличивает магнитный поток через эту площадку.
5) При β-распаде ядра выполняется закон сохранения электрического заряда.

Электромагнитные волны ультрафиолетового диапазона имеют бoльшую длину волны чем радиоволны

Задание 1. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

1) При любом равномерном движении тело за каждую секунду совершает одинаковые перемещения.

2) Скорость диффузии жидкостей повышается с повышением температуры.

3) Общее сопротивление системы параллельно соединённых резисторов равно сумме сопротивлений всех резисторов.

4) Электромагнитные волны ультрафиолетового диапазона имеют большую длину волны, чем радиоволны.

5) Атомы изотопов одного элемента различаются числом нейтронов в ядре и занимают одну и ту же клеточку в Периодической таблице Д. И. Менделеева.

1) Нет, например, при круговом равномерном движении перемещение может равняться нулю.

2) Да, скорость проникновение одного вещества в другое (диффузия) возрастает с повышением температуры.

3) Нет, это правило будет справедливо при последовательном соединении резисторов.

4) Нет, ультрафиолетовые волны имеют меньшую длину волны, чем радиоволны.

5) Да, атомы изотопов одного элемента различаются числом нейтронов в ядре и занимают одну и ту же клеточку в Периодической таблице Д. И. Менделеева.

Диапазоны излучения и вещество

Хотя в вакууме электромагнитные волны всех частот распространяются одинаково — со скоростью света, их взаимодействие с веществом очень сильно зависит от частоты (а равным образом от длины волны и энергии кванта). По характеру взаимодействия с веществом излучение делят на диапазоны: гамма-излучение, рентген, ультрафиолет, видимый свет, инфракрасное излучение и радиоволны, которые вместе образуют электромагнитный спектр. Сами эти диапазоны в свою очередь разделяют на поддиапазоны, причем в науке нет единой устоявшейся традиции такого деления. Тут многое зависит от применяемых технических средств для генерации и регистрации излучения. Поэтому в каждой сфере науки и техники поддиапазоны определяют по-своему, а нередко даже сдвигают границы основных диапазонов.

Видимое излучение

Из всего спектра человеческий глаз способен улавливать излучение только в очень узком диапазоне видимого света. От одного его края до другого частота излучения (а равно длина волны и энергия квантов) меняется менее чем в два раза. Для сравнения самые длинные радиоволны в 10 14 раз длиннее видимого излучения, а самые энергичные гамма-кванты — в 10 20 энергичнее. Тем не менее, на протяжении многих тысяч лет большую часть информации об окружающем мире люди черпали из диапазона видимого излучения, границы которого определяются свойствами светочувствительных клеток человеческой сетчатки.

Разные длины волн видимого света воспринимаются человеком как разные цвета — от красного до фиолетового. Традиционное деление видимого диапазона спектра на семь цветов радуги является культурной условностью. Никаких четких физических границ между цветами нет. Англичане, например, обычно делят радугу на шесть цветов. Известны и другие варианты. За восприятие всего разнообразия цветов и оттенков видимого света отвечают всего три различных типа рецепторов, которые чувствительны к красному, зеленому и синему цвету. Это позволяет воспроизводить практически любой цвет, смешивая на экране эти три основных цвета.

Для приема видимого света от далеких космических источников используют вогнутые зеркала, которые собирают излучение с большой площади практически в одну точку. Чем крупнее зеркала, тем мощнее телескоп. Зеркала должны изготавливаться с чрезвычайно высокой точностью — отклонения формы поверхности от идеальной не должны превышать десятой доли длины волны — 40 нанометров, то есть 0,04 микрона. И такая точность должна сохраняться при любых поворотах зеркала. Это определяет высокую стоимость больших телескопов. Диаметр зеркал самых крупных оптических инструментов — телескопов Кека на Гавайях — 10 метров.

Хотя атмосфера прозрачна для видимого света (отмечено голубыми стрелками на плакате), она всё же создает серьезные помехи для наблюдений. Даже если забыть про облака, атмосфера немного искривляет лучи света, что снижает четкость изображения. Кроме того, сам воздух рассеивает падающий свет. Днем это голубое свечение, вызванное рассеянным светом Солнца, не позволяет вести астрономические наблюдения, а ночью — рассеянный свет звезд (и в последние десятилетия искусственная засветка неба наружным освещением городов, автомобилями и т. п.) ограничивает видимость самых бледных объектов. Справиться с этими трудностями позволяет вынос телескопов в космос. Телескоп «Хаббл» по земным меркам имеет очень скромные размеры — диаметр 2,24 метра, однако благодаря заатмосферному размещению он позволил сделать множество первоклассных астрономических открытий.

Ультрафиолетовое излучение

С коротковолновой стороны от видимого света располагается ультрафиолетовый диапазон, который делят на ближний и вакуумный. Как и видимый свет, ближний ультрафиолет проходит через атмосферу. Органами чувств человек его не воспринимает, но на коже ближний ультрафиолет вызывает появление загара. Это защитная реакция кожи на определенные химические нарушения под действием ультрафиолета. Чем короче длина волны, тем большие нарушения может вызывать ультрафиолетовое излучение в биологических молекулах. Если бы весь ультрафиолет проходил через атмосферу, жизнь на поверхности Земли была бы невозможна. Однако выше некоторой частоты атмосфера перестает пропускать ультрафиолетовое излучение, поскольку энергии его квантов становится достаточно для разрушения (диссоциации) молекул воздуха. Одним из первых ультрафиолетовый удар принимает на себя озон, за ним следует кислород. Вместе атмосферные газы предохраняют поверхность Земли от жесткого ультрафиолетового излучения Солнца, которое называют вакуумным, поскольку оно может распространяться только в пустоте (вакууме). Верхний предел вакуумного ультрафиолета — 200 нм. С этой длины волны начинает поглощать ультрафиолет молекулярный кислород (O2).

Телескопы для ближнего ультрафиолетового излучения строятся по тем же принципам, что и для видимого диапазона. В них тоже используются зеркала, покрытые тонким отражающим металлическим слоем, но изготавливать их надо с еще большей точностью. Ближний ультрафиолет можно наблюдать с Земли, вакуумный — только из космоса.

Рентгеновское излучение

Формальной границы между жестким ультрафиолетовым и рентгеновским излучением нет. К ее определению есть два основных подхода: с одной стороны, к рентгену принято относить излучение, способное вызывать возбуждение атомных ядер — подобно тому, как видимое и инфракрасное излучение возбуждает электронные оболочки атомов и молекул. В этом случае даже жесткий вакуумный ультрафиолет в некоторых случаях может быть отнесен к рентгену. В другом подходе рентгеном считают излучение с длиной волны меньше характерного размера атомов (0,1 нм). Тогда получается, что большую часть мягкого рентгеновского диапазона следует считать сверхжестким ультрафиолетом.

Мягкое рентгеновское излучение еще может отражаться от полированного металла, но только при скользящем падении — под углом менее 1 градуса. Более жесткое излучение приходится концентрировать иными способами. Для задания направления используют узкие трубки, отсекающие кванты, приходящие сбоку, а приемником служит сцинтиллятор, в котором рентгеновские кванты ионизируют атомы, а те, вновь объединяясь с электронами, испускают видимое или ультрафиолетовое излучение, которое регистрируют при помощи фотоэлектронных умножителей. По сути, в телескопах жесткого рентгеновского диапазона ведется подсчет отдельных квантов излучения и уже потом при помощи компьютера формируется изображение.

От рентгена к гамма

Граница, на которой рентгеновский диапазон сменяется гамма-излучением, также условна. Обычно ее связывают с энергией квантов, которые испускаются при ядерных реакциях (или наоборот, могут их вызывать). Другой подход связан с тем, что тепловое излучение не принято относить к гамма-диапазону, как бы ни была высока его энергия. Во Вселенной наблюдаются относительно стабильные макроскопические объекты, разогретые до десятков миллионов градусов — это центральные участки аккреционных дисков вокруг нейтронных звезд и черных дыр. А вот объекты с температурой в миллиарды градусов — например, ядра массивных красных гигантов — практически всегда укрыты непрозрачной оболочкой. Впрочем, нередко даже излучение в их недрах называют не мягким гамма-излучением, а сверхжестким рентгеном. Устойчивых образований с температурой выше десятков миллиардов градусов в современной Вселенной неизвестно. Это дает основание считать, что гамма-излучение всегда генерируется нетепловым путем. Основным механизмом является излучение при столкновении заряженных частиц, разогнанных до околосветовых скоростей мощными электромагнитными полями, например, у нейтронных звезд.

Гамма-излучение

Деление гамма-излучения на поддиапазоны носит еще более условный характер. К сверхвысоким энергиям относят гамма-кванты, генерация которых выходит за пределы возможностей современных технологий. Все источники такого излучения связаны исключительно с космосом. Но поскольку технологиям свойственно развиваться, это определение нельзя назвать четким.

Атмосфера защищает нас и от гамма-излучения. В мягком и жестком поддиапазонах она полностью его поглощает. Кванты диапазона сверхвысоких энергий, сталкиваясь с ядрами атомов в атмосфере, порождают каскады частиц, энергия которых постепенно снижается и рассеивается. Однако первые эшелоны частиц в них движутся быстрее скорости света в воздухе. В таких условиях заряженные частицы порождают так называемое тормозное (черенковское) излучение, в чем-то подобное звуковой ударной волне от сверхзвукового самолета. Ультрафиолетовые и видимые кванты тормозного излучения достигают поверхности Земли, где улавливаются специальными телескопами. Можно сказать, что сама атмосфера становится частью телескопа, и это позволяет наблюдать с Земли гамма-излучение сверхвысоких энергий. Это отмечено на плакате красными стрелками.

Еще более энергичные кванты — ультравысоких энергий — порождают настолько мощные каскады частиц, что они пробивают атмосферу насквозь и достигают поверхности Земли. Их называют широкими атмосферными ливнями (ШАЛ) и регистрируют сцинтилляционными датчиками. Частицы ШАЛ наряду с естественной радиоактивностью земных пород могут повреждать биологические молекулы, в частности ДНК, и вызывать мутации в живых организмах. Тем самым они вносят свой вклад в эволюцию жизни на Земле. Но если бы их интенсивность была заметно выше, это могло бы стать серьезным препятствием для жизни. К счастью, чем выше энергия гамма-квантов, тем реже они встречаются. Самые энергичные кванты с энергией около 10 20 эВ приходят примерно раз в сто лет на квадратный километр земной поверхности. Происхождение столь энергичных гамма-квантов пока не вполне ясно. Значительно большей энергией кванты обладать не могут, так как выше некоторого порога они начинают взаимодействовать с реликтовым микроволновым излучением, приводя к рождению заряженных частиц. Иначе говоря, Вселенная непрозрачна для излучения заметно более энергичного, чем 10 21 –10 24 эВ.

Инфракрасное излучение

Отправляясь от видимого света в длинноволновую сторону спектра, мы попадаем в диапазон инфракрасного излучения. Ближнее ИК-излучение физически ничем не отличается от видимого света, за исключением того, что не воспринимается сетчаткой глаза. Его можно регистрировать теми же приборами, в частности, телескопами, что и видимый свет. Человек также ощущает инфракрасное излучение кожей — как тепло. Именно благодаря инфракрасному излучению нам тепло сидеть у костра. Большую часть энергии горения уносит вверх восходящий поток воздуха, на котором мы кипятим воду в котелке, а инфракрасное (и видимое) излучение испускается в стороны молекулами газов, продуктов сгорания и раскаленными частицами угля.

С ростом длины волны атмосфера теряет прозрачность для инфракрасного излучения. Это связано с так называемыми колебательно-вращательными полосами поглощения молекул атмосферных газов. Будучи квантовыми объектами, молекулы не могут вращаться или колебаться произвольным образом, как грузы на пружинке. У каждой молекулы есть свой набор энергий (и, соответственно, частот излучения), которые они могут запасать в форме колебательных и вращательных движений. Однако даже у не самых сложных молекул воздуха набор этих частот столь обширен, что фактически атмосфера поглощает всё излучение в некоторых участках инфракрасного спектра — это так называемые инфракрасные полосы поглощения. Они перемежаются небольшими участками, в которых космическое ИК-излучение достигает поверхности Земли — это так называемые окна прозрачности, которых насчитывается около десятка. Их существование представлено на плакате разрозненными голубыми стрелками в инфракрасном диапазоне. Интересно отметить, что поглощение ИК-излучения почти полностью происходит в нижних слоях атмосферы из-за повышения плотности воздуха у поверхности Земли. Это позволяет вести наблюдения почти во всем инфракрасном диапазоне с аэростатов и высотных самолетов, которые поднимаются в стратосферу.

Деление инфракрасного излучения на поддиапазоны также весьма условно. Граница между ближним и средним инфракрасным излучением проводится примерно в районе абсолютной температуры 300 К, которая характерна для предметов на земной поверхности. Поэтому все они, включая приборы, являются мощными источниками инфракрасного излучения. Чтобы в таких условиях выделить излучение космического источника, аппаратуру приходится охлаждать до температур, близких к абсолютному нулю, и выносить за пределы атмосферы, которая сама интенсивно светит в среднем ИК-диапазоне — именно за счет этого излучения Земля рассеивает в космос энергию, постоянно поступающую от Солнца. Основной тип приемника излучения в этом диапазоне — болометр, то есть, попросту говоря, маленькое черное тело, поглощающее излучение, соединенное со сверхточным термометром.

Дальний инфракрасный диапазон — один из наиболее сложных, как для генерации, так и для регистрации излучения. В последнее время благодаря разработке особых материалов и сверхбыстродействующей электроники с ним научились достаточно эффективно работать. В технике его часто называют терагерцевым излучением. Сейчас активно идет разработка бесконтактных сканеров для определения химического состава объектов на основе генераторов терагерцевого излучения. Они смогут выявлять пластиковую взрывчатку и наркотики на контрольных пунктах в аэропортах.

В астрономии этот диапазон чаще называют субмиллиметровым излучением. Он интересен тем, что в нем (а также в соседнем с ним микроволновом диапазоне) наблюдается реликтовое излучение Вселенной. До уровня моря субмиллиметровое излучение не доходит, но поглощается оно в основном в самых нижних слоях атмосферы. Поэтому в горах Чили и Мексики на высоте около 5 тысяч метров над уровнем моря сейчас строятся крупные субмиллиметровые телескопы — в Мексике 50-метровый, а в Чили массив из 64 телескопов диаметром 12 метров.

Микроволны и радиоволны

К инфракрасному диапазону примыкает радиоизлучение, которое охватывает весь длинноволновый край электромагнитного спектра. Энергия квантов в радиодиапазоне очень мала. Ее обычно не хватает для существенных изменений в структуре атомов и молекул, но хватает, чтобы взаимодействовать с вращательными уровнями молекул, например, воды. Энергии радиоволн также достаточно для того, чтобы воздействовать на свободные электроны, например, в проводниках. Колебания электромагнитного поля радиоволны вызывают синхронные колебания электронов в антенне, то есть переменный электрический ток.

При высокой интенсивности микроволнового излучения этот ток может вызывать значительный нагрев вещества. Это свойство используется для разогрева продуктов, содержащих воду, в микроволновых печах. Микроволновое излучение также называют сверхвысокочастотным (СВЧ) излучением. Оно является самым коротковолновым поддиапазоном радиоизлучения с длиной волны от 1 мм до 30 см. СВЧ-излучение проникает в толщу продуктов на глубину до нескольких сантиметров, что обеспечивает прогрев по всему объему, а не только с поверхности, как в случае обработки инфракрасным излучением на гриле. В микроволновом диапазоне также работают все системы сотовых телефонов и локальной радиосвязи, например, протоколы Bluetooth и WiFi, используемые беспроводными электронными устройствами.

Чем больше длина радиоволны, тем меньшую энергию она несет и тем труднее ее зарегистрировать. Для приема антенну, в которой под действием радиоволны возникают электрические колебания, подключают к электрическому контуру. При попадании в резонанс с его собственной частотой колебания усиливаются и их можно зарегистрировать. Чтобы поймать радиоволны, идущие из космоса, применяют зеркала-антенны параболической формы, которые собирают радиоизлучение всей своей площадью и концентрируют его на небольшой антенне. Тем самым повышается чувствительность инструмента.

Большая часть микроволнового излучения (начиная с длины волны 3–5 мм) проходит через атмосферу. То же можно сказать про ультракороткие волны (УКВ), на которых вещают местные телевизионные и радиостанции (в т. ч. FM-станции) и ведется космическая радиосвязь. Излучение их передатчиков регистрируется только в пределах прямой видимости антенн. Окно прозрачности атмосферы в радиодиапазоне (голубые стрелки на плакате) заканчивается примерно на длине волны 10–30 метров.

Более длинные радиоволны отражаются от ионосферы Земли. Это не позволяет наблюдать космические радиоисточники на более длинных волнах, но зато обеспечивает возможность глобальной коротковолновой радиосвязи. Радиоволны в диапазоне от 10 до 100 метров могут огибать всю Землю, многократно отражаясь от ионосферы и поверхности Земли. Правда, их распространение зависит от состояния ионосферы, на которую сильно влияет солнечная активность. Поэтому коротковолновая связь не отличается высоким качеством и надежностью.

Средние и длинные волны также отражаются от ионосферы, но сильнее затухают с расстоянием. Для того чтобы сигнал можно было поймать на расстоянии более тысячи километров, требуются очень мощные передатчики. Сверхдлинные радиоволны, с длиной в сотни и тысячи километров, огибают Землю уже не благодаря ионосфере, а за счет волновых эффектов, которые также позволяют им проникать на некоторую глубину под поверхность океана. Это свойство используется для экстренной связи с боевыми подводными лодками в погруженном состоянии. Другие радиоволны не проходят через морскую воду, которая из-за растворенных в ней солей представляет из себя хороший проводник и поглощает или отражает радиоизлучение.

Никакого теоретического предела для длины радиоволн неизвестно. На практике экспериментально удалось создать и зарегистрировать радиоволну с длиной волны 38 тыс. км (частота 8 Гц).

58. Шкала электромагнитных волн.

Шкала электромагнитных волн. Мы назвали ультра­фиолетовыми волнами электромагнитные волны, длина ко­торых меньше 400 нм (4000 Å), а инфракрасными — волны с длиной, превышающей 760 нм (7600 Å). Совершенно ясно, что границы эти довольно произвольны, и нет никакого резкого изменения в свойствах при переходе от крайних фиолетовых волн к ультрафиолетовым или от крайних крас­ных к инфракрасным. Поэтому указания, где начина­ются ультрафиолетовые или инфракрасные волны, имеют лишь условный характер. Так же условно и указание, где кончаются ультрафиолетовые и инфракрасные обла­сти спектра.

При исследованиях этих областей серьезным затрудне­нием является то обстоятельство, что большинство матери­алов, прозрачных для видимого света, сильно поглощает

*) Использование дифракции рентгеновских лучей на обычных дифракционных решетках (см. § 138) для точного определения длины волны было предложено значительно позже.

**) Способность излучения проникать через вещество называется жесткостью этого излучения.

более короткие и более длинные волны. Улучшение техни­ки эксперимента все же дало возможность получить и иссле­довать инфракрасные волны длиной до нескольких сот мик­рометров. С другой стороны, оказалось возможным элект­рическими способами получить радиоволны, длина которых также выражается сотнями микрометров. Таким образом, мы имеем непрерывный переход от видимого света через инфракрасные волны к радиоволнам.

Наши сведения о коротковолновой области спектра также пополнялись, так сказать, с двух концов. С одной стороны, улучшение техники работы с ультрафиолетовыми волнами позволило спуститься приблизительно до 5 нм (50 Å). С другой стороны, с течением времени были найдены способы получать и исследовать рентгеновские волны (см. § 154) длиной в несколько десятков нанометров. Таким образом, и в области коротких электромагнитных волн мы имеем не­прерывный переход от видимого света через ультрафиолето­вые волны к рентгеновским сколь угодно малой длины. Весьма короткие электромагнитные волны наблюдаются в излучении радиоактивных веществ (так называемое излучение, см. § 211) в космических лучах, а также при ударах очень быстрых электронов, разгоняемых ускори­телями (см. § 216).

Вся шкала электромагнитных волн уже была приведена и описана в § 58 (см. рис. 125).

Электромагнитная теория света. Шкала электромаг­нитных волн. Теория электромагнитных волн позволила объяснить с единой точки зрения множество разнообразных электромагнитных явлений. Но из этой теории вытекал еще один вывод огромной важности.

Пользуясь данными, полученными из измерения чисто электрических величин (сил взаимодействия между токами и между зарядами), Максвелл смог вычислить скорость, с которой должны распространяться электромагнитные волны. Результат оказался поразительным: скорость полу­чилась равной 300 000 км/с, т. е. совпала с измеренной оптическими способами скоростью света. Максвелл выдви­нул тогда смелое предложение, что свет по природе своей

*) То есть к инфракрасным,

есть электромагнитное явление, что световые волны — это лишь разновидность электромагнитных волн, а именно, вол­ны с очень высокими частотами, порядка 10 15 герц.

Опыты Герца, доказавшие существование электромаг­нитных волн и позволившие подтвердить заключение Максвелла о том, что эти волны распространяются с такой же

Рис. 124. Приборы Лебедева для опытов с электромагнитными вол­нами длиной 6 мм

скоростью, как и свет, послужили сильным доводом в пользу электромагнитной теории света. Множество других явле­ний, как из числа известных ранее, так и открытых впослед­ствии, показало настолько тесную связь между оптиче­скими и электромагнитными явлениями, что электромаг­нитная природа света превратилась из предположения в твердо установленный факт.

Исследования, производившиеся в самых разнообразных областях физики, позволили установить, что диапазон частот или длин электромагнитных волн *) чрезвычайно ши­рок. В этой главе мы ограничиваемся только электромаг­нитными волнами в узком понимании этого термина, т. е. такими, длина которых превышает сотые доли миллиметра и которые в большинстве своем используются в радиотех­нике и поэтому называются радиоволнами. С другими, более короткими электромагнитными волнами, с их особыми свойствами, со способами их получения и наблюдения мы познакомимся в следующих разделах. Однако уже здесь мы приведем диаграмму, которая дает представление обо всей шкале электромагнитных волн.

Рис. 125. Шкала электромагнитных волн: 1 ГГц=10 3 МГц=10 9 Гц 1нм=10 -3 мкм=10 -9 м

Эта диаграмма (рис. 125) построена несколько необычно ввиду огромного различия длин волн. На горизонтальной прямой на равных расстояниях друг от друга нанесены метки, соответствующие длинам, каждая из которых отли­чается в десять раз от соседней. Это и есть шкала длин волн , начинающаяся на нашей диаграмме слева с =10 км и заканчивающаяся значением =0,001 нм. Разумеется, 10 км слева и 0,001 нм справа — это границы рисунка, а не самой шкалы электромагнитных волн, кото­рую можно представить себе продолженной в обе стороны.

Под шкалой длин волн  нанесена шкала соответствую­щих им частот колебаний v. Продолжая шкалу влево, мы переходим ко все более длинным волнам, т. е. ко все более низким частотам, пока не дойдем, наконец, до частоты v=0, т. е. до постоянного, не меняющегося со временем тока. Можно сказать, что такому току соответствует беско­нечно большая длина волны, но это, конечно, чисто формаль­ное утверждение. С уменьшением частоты условия излу-

*) Напомним, что частота  и длина волны  связаны соотношением =c/, где c=300 000 км/с.

чения делаются все хуже (§ 55), и постоянный ток, кото­рый должен был бы излучать «бесконечно длинную» волну, просто ничего не излучает. Нашу диаграмму можно про­должать и вправо, переходя ко все более высоким частотам и соответственно все более коротким волнам.

На диаграмме указаны участки  (или ), занимаемые различными видами электромагнитных волн. Как сказано, в этой главе мы ограничиваемся только левым участком, который начинается с «бесконечно длинных» волн и кон­чается в области сотен микрометров, т. е. тянется от «нуле­вой частоты» до частот в десятки тысяч гигагерц. Мы видим, что этот участок волн, которые получают электри­ческими способами, перекрывается на своем коротковол­новом конце с инфракрасными (тепловыми) волнами. Это значит, что волну, длина которой, например, 0,05 мм можно получить и посредством электрических колебаний, и тепло­вым способом, т. е. при излучении нагретого тела.

Еще не так давно на шкале электромагнитных волн не было таких перекрываний, а, наоборот, имелись пробелы. В частности, был пробел между электро­магнитным диапазоном (в узком смысле) и инфракрасными волнами. Электромаг­нитные волны были получены длиной до 6 мм (Лебедев), а тепловые — до 0,343 мм (Рубенс).

В 1922 г. советский физик Александра Андреевна Глаголева-Аркадьева (1884— 1945) ликвидировала этот пробел, полу­чив электромагнитные волны длиной от |1 см до 0,35 мм с помощью придуман­ного ею прибора, названного массовым излучателем.

Схема этого прибора показана на рис. 126. В сосуде 1 находятся мелкие металлические опилки, взвешенные в трансформаторном масле. Не показанная на рисунке мешалка все время поддерживает опилки во взвешенном состоянии, не давая им осесть на дно. Вращающееся коле­сико 2 захватывает смесь и окружается ею наподобие шины. С помощью Проводов 3, присоединенных к индуктору, через смесь пропускается искровой разряд. Металлические опилки образуют при своем движе­нии множество случайных пар, которые играют роль маленьких вибра­торов и при разряде излучают короткие волны. Так как размеры слу­чайно образующихся вибраторов различны и колебания в них не гар­монические, а затухающие, в излучении присутствуют одновременно все длины волн указанного выше диапазона. Можно сказать, что массо­вый излучатель испускает «электромагнитный шум», а не «аккорд» или «ноту».

Рис. 126. Массовый излучатель Глаголевой-Аркадьевой

В массовом излучателе преодолены две основные трудности, неиз­бежно возникающие при попытке использовать один-единственный виб­ратор столь малых размеров. Во-первых, такой единственный вибратор дает ничтожно слабое излучение. В массовом же излучателе одновремен­но работает много вибраторов. Во-вторых, в одном вибраторе опилки быстро сгорают от искры. В приборе Глаголевой-Аркадьевой этого не происходит, так как в области разряда опилки непрерывно сменяются.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *