Как доказать что трапеции равны
Перейти к содержимому

Как доказать что трапеции равны

  • автор:

Научный форум dxdy

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву , правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.

Равенство трапеций по четырём сторонам

Последний раз редактировалось AKM 14.10.2011, 10:53, всего редактировалось 1 раз.

Ваш вопрос эквивалентен следующей задаче № 2.156 из заданика Гордина:

Существуют ли две трапеции, основания первой из
которых соответственно равны боковым сторонам второй, а основания второй боковым сторонам первой?

Автор дает ответ: НЕТ.

Но все же пока непонятно как доказать равенство трапеций по четырем сторонам.

— Пт сен 24, 2010 23:06:36 —

А вообще, если приглядеться повнимательней, действительно этот параллельный перенос срабатывает, получаем два трегольника, равных по трем сторонам AB=A’B’, BE=B’E’ и AE=A’E’, так как AE=AD-BC и A’E’=A’D’-B’C’.

Вот пример: прямоугольная трапеция с основаниями 7 и 4, боковами сторонами 4 и 5. То есть (7;4;4;5) и
равнобокая трапеция с основаниями 7 и 5, боковами сторонами 4 и 5. То есть (7;4;5;4). Они не равны, конечно.

Вообще, Ваша тема очень интересна и вполне может быть дискуссионной. Вместе с темой о построении треугольников.
Я бы сказал, что речь идёт о некотором наборе условий, однозначно определяющих фигуру. У треугольников это три стороны, две стороны и угол между ними и так далее. Интересно было бы одно из условий сформулировать не в терминах равенства ряда параметров каким-то значениям, а в виде некоторой связи между параметрами.
Что Вы, собственно, и делаете. Оказалось, что задание 4-х длин сторон трапеции в указанном порядке однозначно определяет её (или говорит о несуществовании или вырожденности), а без указания порядка не определяет. В общем, трапецевидность четырёхугольника можно описать через связь его внутренних углов. Например, что ровно две непересекающиеся пары углов в сумме дают 180 градусов. Ну и тому подобное.
Было бы интересно, какие ещё условия в добавлению к равенству сторон однозначно определяют четырёхугольник.

Трапеция

Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.

Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию.

Теоремы: свойства трапеции

1) Сумма углов при боковой стороне равна \(180^\circ\) .

2) Диагонали делят трапецию на четыре треугольника, два из которых подобны, а два другие – равновелики.

Доказательство

1) Т.к. \(AD\parallel BC\) , то углы \(\angle BAD\) и \(\angle ABC\) – односторонние при этих прямых и секущей \(AB\) , следовательно, \(\angle BAD +\angle ABC=180^\circ\) .

2) Т.к. \(AD\parallel BC\) и \(BD\) – секущая, то \(\angle DBC=\angle BDA\) как накрест лежащие.
Также \(\angle BOC=\angle AOD\) как вертикальные.
Следовательно, по двум углам \(\triangle BOC \sim \triangle AOD\) .

Определение

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Теорема

Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

1) Докажем параллельность.

Проведем через точку \(M\) прямую \(MN'\parallel AD\) ( \(N'\in CD\) ). Тогда по теореме Фалеса (т.к. \(MN'\parallel AD\parallel BC, AM=MB\) ) точка \(N'\) — середина отрезка \(CD\) . Значит, точки \(N\) и \(N'\) совпадут.

2) Докажем формулу.

Проведем \(BB'\perp AD, CC'\perp AD\) . Пусть \(BB'\cap MN=M', CC'\cap MN=N'\) .

Тогда по теореме Фалеса \(M'\) и \(N'\) — середины отрезков \(BB'\) и \(CC'\) соответственно. Значит, \(MM'\) – средняя линия \(\triangle ABB'\) , \(NN'\) — средняя линия \(\triangle DCC'\) . Поэтому: \[MM'=\dfrac12 AB', \quad NN'=\dfrac12 DC'\]

Т.к. \(MN\parallel AD\parallel BC\) и \(BB', CC'\perp AD\) , то \(B'M'N'C'\) и \(BM'N'C\) – прямоугольники. По теореме Фалеса из \(MN\parallel AD\) и \(AM=MB\) следует, что \(B'M'=M'B\) . Значит, \(B'M'N'C'\) и \(BM'N'C\) – равные прямоугольники, следовательно, \(M'N'=B'C'=BC\) .

Теорема: свойство произвольной трапеции

Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.

Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

1) Докажем, что точки \(P\) , \(N\) и \(M\) лежат на одной прямой.

Проведем прямую \(PN\) ( \(P\) – точка пересечения продолжений боковых сторон, \(N\) – середина \(BC\) ). Пусть она пересечет сторону \(AD\) в точке \(M\) . Докажем, что \(M\) – середина \(AD\) .

Рассмотрим \(\triangle BPN\) и \(\triangle APM\) . Они подобны по двум углам ( \(\angle APM\) – общий, \(\angle PAM=\angle PBN\) как соответственные при \(AD\parallel BC\) и \(AB\) секущей). Значит: \[\dfrac=\dfrac\]

Рассмотрим \(\triangle CPN\) и \(\triangle DPM\) . Они подобны по двум углам ( \(\angle DPM\) – общий, \(\angle PDM=\angle PCN\) как соответственные при \(AD\parallel BC\) и \(CD\) секущей). Значит: \[\dfrac=\dfrac\]

Отсюда \(\dfrac=\dfrac\) . Но \(BN=NC\) , следовательно, \(AM=DM\) .

2) Докажем, что точки \(N, O, M\) лежат на одной прямой.

Пусть \(N\) – середина \(BC\) , \(O\) – точка пересечения диагоналей. Проведем прямую \(NO\) , она пересечет сторону \(AD\) в точке \(M\) . Докажем, что \(M\) – середина \(AD\) .

\(\triangle BNO\sim \triangle DMO\) по двум углам ( \(\angle OBN=\angle ODM\) как накрест лежащие при \(BC\parallel AD\) и \(BD\) секущей; \(\angle BON=\angle DOM\) как вертикальные). Значит: \[\dfrac=\dfrac\]

Аналогично \(\triangle CON\sim \triangle AOM\) . Значит: \[\dfrac=\dfrac\]

Отсюда \(\dfrac=\dfrac\) . Но \(BN=CN\) , следовательно, \(AM=MD\) .

Определения

Трапеция называется прямоугольной, если один из ее углов – прямой.

Трапеция называется равнобедренной, если ее боковые стороны равны.

Теоремы: свойства равнобедренной трапеции

1) У равнобедренной трапеции углы при основании равны.

2) Диагонали равнобедренной трапеции равны.

3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.

Доказательство

1) Рассмотрим равнобедренную трапецию \(ABCD\) .

Из вершин \(B\) и \(C\) опустим на сторону \(AD\) перпендикуляры \(BM\) и \(CN\) соответственно. Так как \(BM\perp AD\) и \(CN\perp AD\) , то \(BM\parallel CN\) ; \(AD\parallel BC\) , тогда \(MBCN\) – параллелограмм, следовательно, \(BM = CN\) .

Рассмотрим прямоугольные треугольники \(ABM\) и \(CDN\) . Так как у них равны гипотенузы и катет \(BM\) равен катету \(CN\) , то эти треугольники равны, следовательно, \(\angle DAB = \angle CDA\) .

2)

Т.к. \(AB=CD, \angle A=\angle D, AD\) – общая, то по первому признаку \(\triangle ABD=\triangle ACD\) . Следовательно, \(AC=BD\) .

3) Т.к. \(\triangle ABD=\triangle ACD\) , то \(\angle BDA=\angle CAD\) . Следовательно, треугольник \(\triangle AOD\) – равнобедренный. Аналогично доказывается, что и \(\triangle BOC\) – равнобедренный.

Теоремы: признаки равнобедренной трапеции

1) Если у трапеции углы при основании равны, то она равнобедренная.

2) Если у трапеции диагонали равны, то она равнобедренная.

Доказательство

Рассмотрим трапецию \(ABCD\) , такую что \(\angle A = \angle D\) .

Достроим трапецию до треугольника \(AED\) как показано на рисунке. Так как \(\angle 1 = \angle 2\) , то треугольник \(AED\) равнобедренный и \(AE = ED\) . Углы \(1\) и \(3\) равны как соответственные при параллельных прямых \(AD\) и \(BC\) и секущей \(AB\) . Аналогично равны углы \(2\) и \(4\) , но \(\angle 1 = \angle 2\) , тогда \(\angle 3 = \angle 1 = \angle 2 = \angle 4\) , следовательно, треугольник \(BEC\) тоже равнобедренный и \(BE = EC\) .

В итоге \(AB = AE — BE = DE — CE = CD\) , то есть \(AB = CD\) , что и требовалось доказать.

2) Пусть \(AC=BD\) . Т.к. \(\triangle AOD\sim \triangle BOC\) , то обозначим их коэффициент подобия за \(k\) . Тогда если \(BO=x\) , то \(OD=kx\) . Аналогично \(CO=y \Rightarrow AO=ky\) .

Т.к. \(AC=BD\) , то \(x+kx=y+ky \Rightarrow x=y\) . Значит \(\triangle AOD\) – равнобедренный и \(\angle OAD=\angle ODA\) .

Таким образом, по первому признаку \(\triangle ABD=\triangle ACD\) ( \(AC=BD, \angle OAD=\angle ODA, AD\) – общая). Значит, \(AB=CD\) , чтд.

Как доказать что трапеции равны

Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

AD∥BC, AB∦CD.

Параллельные стороны трапеции называются её основаниями (BC и AD) , а две другие стороны – боковыми сторонами (AB и CD) .

Если боковые стороны равны, трапеция называется равнобедренной.

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной.

∠BAD=∠ABC=90°.

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

AE=EB, CF=FD, EF – средняя линия.

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

EF∥BC, EF∥AD.

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

BE – биссектриса, AB=AE.

3. Треугольники образованные отрезками диагоналей и основаниями трапеции, подобны.

AC и BD – диагонали, k – коэффициент подобия, ΔBOC

Площади этих треугольников относятся, как квадрат коэффициента подобия.

4. Треугольники образованные

отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

BH=HD, CG=GA, EF – средняя линия.

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

BD∩CA=E, BH – продолжение стороны AB, CH – продолжение стороны DC, AH∩DH=H, BG=GC, AF=FD, H, G, E, F ∈ FH.

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

BG=GC, AH=HD, ∠BAD+∠CDA=90°.

9. Если в трапецию вписана окружность

и она делит боковую сторону точкой касания на два отрезка, то радиус равен корню из произведения этих двух отрезков.

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

виды трапеций

Параллельные стороны трапеции называются основаниями. Д ругие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

равнобедренная трапеция

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

прямоугольная трапеция

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

средняя линия

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

свойство средней линии трапеции

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

биссектриса в трапеции

3. Треугольники $AOD$ и $COB$, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – $k=\frac.$

Отношение площадей этих треугольников есть $k^2$.

57

4. Треугольники $ABO$ и $DCO$, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

свойства трапеции, равновеликие треугольники

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

окружность, вписанная в трапецию

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

qk

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

е

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

трапеция с углами при основании в сумме 90

1. В равнобедренной трапеции углы при любом основании равны.

свойства равнобедренной трапеции

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

трапеция вписана в окружность

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

диагонали трапеции перпендикулярны

Если в трапецию вписана окружность с радиусом $r$ и она делит боковую сторону точкой касания на два отрезка — $a$ и $b$, то $r=\sqrt.$

4

$\colorS=\frac<2>\cdot h$ или $\colorS=lh,$ где $l$ – средняя линия

площадь трапеции

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *