Как найти полярные координаты точки
Перейти к содержимому

Как найти полярные координаты точки

  • автор:

Простейшие задачи аналитической геометрии на плоскости

Теорема 1. Для любых двух точек иплоскости расстояниемежду ними выражается формулой:

. (1.1)

Например, если даны точки и, то расстояние между ними:

.

2. Площадь треугольника.

Теорема 2. Для любых точек

, не лежащих на одной прямой, площадь треугольника выражается формулой:

. (1.2)

Например, найдем площадь треугольника, образованного точками ,и.

.

Замечание. Если площадь треугольника равна нулю, это означает, что точки лежат на одной прямой.

3. Деление отрезка в заданном отношении.

Пусть на плоскости дан произвольный отрезок и пусть

–любая точка этого отрезка, отличная от точек концов. Число , определенное равенством, называетсяотношением, в котором точка делит отрезок.

Задача о делении отрезка в данном отношении состоит в том, чтобы по данному отношению и данным координатам точек

и найти координаты точки.

Теорема 3. Если точка делит отрезок в отношении

, то координаты этой точки определяются формулами: (1.3), где– координаты точки,– координаты точки.

Следствие: Если – середина отрезка

, где и, то(1.4) (т.к.).

Например. Даны точки и. Найти координаты точки, которая в два раза ближе к, чем к

Решение: Искомая точка делит отрезок

в отношении так как, тогда,, получили

.

Полярные координаты

Наиболее важной после прямоугольной системы координат является полярная система координат. Она состоит из некоторой точки , называемойполюсом, и исходящего из нее луча полярной оси. Кроме того, задается единица масштаба для измерения длин отрезков.

Пусть задана полярная система координат и пусть – произвольная точка плоскости. Пусть – расстояние от точки

до точки ;– угол, на который нужно повернуть полярную ось для совмещения с лучом.

Полярными координатами точки называются числаи. При этом числосчитается первой координатой и называетсяполярным радиусом, число – второй координатой и называетсяполярным углом.

Обозначается . Полярный радиус может иметь любое неотрицательное значение:. Обычно считают, что полярный угол изменяется в следующих пределах:. Однако в ряде случаев приходится определять углы, отсчитываемые от полярной оси по часовой стрелке.

Связь между полярными координатами точки и ее прямоугольными координатами.

Будем считать, что начало прямоугольной системы координат находится в полюсе, а положительная полуось абсцисс совпадает с полярной осью.

Пусть – в прямоугольной системе координат и– в полярной системе координат. Определен– прямоугольный треугольник с. Тогда(1.5). Эти формулы выражают прямоугольные координаты через полярные.

С другой стороны, по теореме Пифагора и

(1.6) – эти формулы, выражают полярные координаты через прямоугольные.

Заметим, что формула определяет два значения полярного угла, так как. Из этих двух значений углавыбирают тот, при котором удовлетворяются равенства.

Например, найдем полярные координаты точки ..или, т.к.I четверти.

Пример 1: Найти точку, симметричную точке

относительно биссектрисы первого координатного угла.

Проведем через точку А прямую l1, перпендикулярную биссектрисе l первого координатного угла. Пусть . На прямой l1 отложим отрезок СА1, равный отрезку АС. Прямоугольные треугольники АСО и А1СО равны между собой (по двум катетам). Отсюда следует, что |ОА| = |OA1|. Треугольники ADO и ОЕА1 также равны между собой (по гипотенузе и острому углу). Заключаем, что |AD| = |ОЕ| = 4, |OD| = |EA1| = 2, т.е. точка имеет координаты х = 4, у = -2, т.е. А1(4;-2).

Отметим, что имеет место общее утверждение: точка A1, симметричная точке относительно биссектрисы первого и третьего координатных углов, имеет координаты , то есть.

Пример 2: Найти точку, в которой прямая, проходящая через точки и , пересечет ось Ох.

Координаты искомой точки С есть (x; 0). А так как точки А, В и С лежат на одной прямой, то должно выполняться условие (x2-x1)(y3-y1)-(x3-x1)(y2-y1)=0 (формула (1.2), площадь треугольника ABC равна нулю!), где – координаты точки А, – точкиВ, – точкиС. Получаем , т.е., , . Следовательно, точка С имеет координаты ,, т.е..

Пример 3: В полярной системе координат заданы точки ,. Найти: а) расстояние между точками и ; б) площадь треугольника ОМ1М2 – полюс).

а) Воспользуемся формулами (1.1) и (1.5):

,

то есть, .

б) пользуясь формулой для площади треугольника со сторонами а и b и углом между ними (), находим площадь треугольника ОМ1М2. .

Полярная система координат: основные понятия и примеры

Полярная система координат: основные понятия и обозначения

Если уж речь зашла о полярной системе координат, то вообразите себя полярниками, стоящими на Северном полюсе. Или на Южном (это не так важно). Пусть в точке полюса находится начало линейки. В точку полюса также положим начало карандаша, а весь карандаш полностью прилегает к линейке. Теперь повернём карандаш так, чтобы его начало оставалось там же, на полюсе, а между ним и линейкой образовался некоторый угол поворота. Конец карандаша оказался в некоторой точке, назовём её M. Вот мы и получили полярные координаты точки M: длина карандаша и угол, на который был повёрнут карандаш. А теперь об этом же в более строгих и точных определениях.

Полярная система координат определяется заданием некоторой точки O, называемой полюсом, исходящего из этой точки луча OA (обозначается также и как Ox), называемого полярной осью, и масштаба для изменения длин. Кроме того, при задании полярной системы координат должно быть определено, какие повороты вокруг точки O считаются положительными (на чертежах обычно положительными считаются повороты против часовой стрелки).

положение точки в полярной системе координат

Итак, выберем на плоскости (рисунок выше) некоторую точку O (полюс) и некоторый выходящий из неё луч Ox. Кроме того, укажем единицу масштаба. Полярными координатами точки M называются два числа ρ и φ, первое из которых (полярный радиус ρ) равно расстоянию точки M от полюса O, а второе (полярный угол φ, который называют также амплитудой) — угол, на который нужно повернуть против часовой стрелки луч Ox до совмещения с лучом OM.

Точку M с полярными координатами ρ и φ обозначают символом M(ρ, φ) .

Связь полярных координат с декартововыми координатами

Установим связь между полярными координатами точки и её декартовыми координатами. Будем предполагать, что начало декартовой прямоугольной системы координат находится в полюсе, а положительная полуось абсцисс совпадает с полярной осью. Пусть точка M имеет декартовы координаты x и y и полярные координаты ρ и φ.Тогда

Полярные координаты ρ и φ точки M определяются по её декартовым координатам следующим образом:

Для того, чтобы найти величину угла φ, нужно, используя знаки x и y, определить квадрант, в котором находится точка M, и, кроме того, воспользоваться тем, что тангенс угла φ равен .

Приведённые выше формулы называются формулами перехода от декартовых координат к полярным.

Одно из наиболее частых применений полярных координат в высшей математике — решения двойных интегралов в полярных координатах.

Задачи о точках в полярной системе координат

Пример 1. В полярной системе координат на плоскости даны точки

Найти полярные координаты точек, симметричных этим точкам относительно полярной оси.

Решение. При симметрии длина луча не меняется. Следовательно, первая координата — длина луча — у симметричной относительно полярной оси точки будет как и у данной точки. Как видно из рисунка в начале урока, при построении симметричной относительно полярной оси точки данную точку нужно повернуть вокруг полярной оси на тот же угол φ. Следовательно, в полярной системе координат второй координатой симметричной точки будет угол для исходной точки, взятый с противоположным знаком, то есть -φ. Итак, полярные координаты точки, симметричной данной относительно полярной оси будут отличаться лишь второй координатой, и эта координата будет с противоположным знаком. Полярные координаты искомых симметричных точек будут следующими:

Пример 2. В полярной системе координат на плоскости даны точки

Найти полярные координаты точек, симметричных этим точкам относительно полюса.

Решение. При симметрии длина луча не меняется. Следовательно, первая координата — длина луча — у симметричной относительно полюса точки будет как и у данной точки. Симметричная относительно полюса точка получается вращением исходной точки на 180 градусов против часовой стрелки, то есть на угол π. Следовательно, вторая координата точки, симметричной данной относительно полюса рассчитывается как φ + π (если в результате получится числитель больше знаменателя, то вычтем из полученного числа один полный оборот, то есть 2π). Получаем следующие координаты точек, симметричных данным относительно полюса:

Пример 3. Полюс полярной системы координат совпадает с началом декартовых прямоугольных координат, а полярная ось совпадает с положительной полуосью абсцисс. В полярной системе координат даны точки

Найти декартовы координаты этих точек.

Решение. Используем формулы перехода от полярных координат к декартовым:

Получаем следующие декартовы координаты данных точек:

Пример 4. Полюс полярной системы координат совпадает с началом декартовых прямоугольных координат, а полярная ось совпадает с положительной полуосью абсцисс. В декартовой прямоугольной системе координат даны точки

Найти полярные координаты этих точек.

Решение. Определяем первую из полярных координат по формуле , а тангенс угла φ — второй из полярных координат как . Получаем следующие полярные координаты данных точек:

Полярные координаты — определение и вычисление с примерами решения

Полярные координаты. параметрические уравнения линии

Полярные координаты

Основная идея метода координат состоит в том, что положение точки на плоскости однозначно определяется с помощью двух чисел. Конкретный геометрический смысл этих чисел дает ту или иную систему координат. Наиболее важной после прямоугольной системы, исключительно употреблявшейся нами до сих пор, является полярная система координат, к рассмотрению которой мы и переходим.

Возьмем на плоскости точку О, которую назовем полюсом. Проведем из полюса О направленную полупрямую Ох, называемую полярной осью (рис. 41).

Полярные координаты - определение и вычисление с примерами решения

Пусть М — произвольная точка плоскости. Соединим точку М с полюсом О отрезком ОМ. Длина отрезка ОМ = р называется полярным радиусом точки М, а угол Полярные координаты - определение и вычисление с примерами решения

Точка М с полярными координатами риф записывается следующим образом: М (р, ф), причем на первом месте ставится полярный радиус р, а на втором — полярный угол ф.

Что касается значений, принимаемых полярными координатами, то достаточно, очевидно, рассматривать значения р от 0 до Полярные координаты - определение и вычисление с примерами решенияи значения ф от 0 до Полярные координаты - определение и вычисление с примерами решения, при этом, как мы условились, угол ф отсчитывается от полярной оси против хода часовой стрелки. Однако в некоторых вопросах приходится рассматривать углы, большие Полярные координаты - определение и вычисление с примерами решения, а также отрицательные углы, т. е. углы, отсчитываемые от полярной оси по направлению движения часовой стрелки.

Связь между прямоугольными и полярными координатами

Рассмотрим переход от полярных координат к прямоугольным и обратно.

Предположим, что полюс полярной системы совпадает с началом прямоугольной системы координат Оху, а полярная ось является положительной полуосью Ох (рис. 42).

Полярные координаты - определение и вычисление с примерами решения

Тогда для произвольной точки М имеем

Полярные координаты - определение и вычисление с примерами решения

Считая угол ф острым, из прямоугольного треугольника АОМ находим

Полярные координаты - определение и вычисление с примерами решения

Полученные формулы справедливы для любого угла ф. Так выражаются прямоугольные координаты точки М через ее полярные координаты. Далее, из этого же прямоугольного треугольника АОМ получаем

Полярные координаты - определение и вычисление с примерами решения

Так выражаются полярные координаты точки через ее прямоугольные координаты.

Заметим, что при определении полярного угла ф по tg ф нужно учитывать знаки координат х и у.

Ранее мы видели, что линии могут быть заданы с помощью уравнений, связывающих их текущие прямоугольные координаты. Покажем теперь на простейшем примере, что линии могут определяться и уравнениями относительно полярных координат.

Пример:

Рассмотрим кривую Полярные координаты - определение и вычисление с примерами решения, где а — некоторое положительное число. Эта кривая называется спиралью Архимеда. Для ее построения составляем таблицу соответственных значений ф и р:

Полярные координаты - определение и вычисление с примерами решенияПолярные координаты - определение и вычисление с примерами решения

По этой таблице наносим точки и соединяем их линией, уточняя, если в этом есть необходимость, положение промежуточных точек (рис. 43).

Параметрические уравнения линии

Иногда бывает удобнее вместо уравнения линии, связывающего прямоугольные координаты Полярные координаты - определение и вычисление с примерами решения, рассматривать так называемые параметрические уравнения линии, дающие выражения текущих координат х и у в виде функций от некоторой переменной величины t (параметра). Параметрические уравнения играют важную роль, например, в механике, где координаты х и у движущейся точки М (х, у) рассматриваются как функции времени (уравнения движения).

Пример:

Выведем параметрические уравнения окружности.

Пусть М Полярные координаты - определение и вычисление с примерами решения— произвольная точка окружности радиуса R с центром в начале координат (рис. 44). В определяемом ею прямоугольном треугольнике АОМ обозначим угол хОМ через t. Тогда, очевидно, будут иметь место равенства

Полярные координаты - определение и вычисление с примерами решенияПолярные координаты - определение и вычисление с примерами решения

Это и есть параметрические уравнения окружности.

Чтобы получить обычное уравнение окружности, нужно исключить параметр t. Для этого возводим уравнения (1) в квадрат и складываем их:

Полярные координаты - определение и вычисление с примерами решения

Пример:

Выведем параметрические уравнения эллипса.

Эллипс с полуосями а и b можно рассматривать как равномерно сжатую вдоль вертикального диаметра окружность радиуса а, где коэффициент сжатия k = b/a. Пусть М (х, у) — точка эллипса, N (X, У) — соответствующая точка окружности (рис. 45), где

Полярные координаты - определение и вычисление с примерами решения

Полярные координаты - определение и вычисление с примерами решенияЗа параметр t примем угол, образованный радиусом ON окружности с положительным направлением оси Ох: Полярные координаты - определение и вычисление с примерами решения. Используя формулы (2), имеем

Полярные координаты - определение и вычисление с примерами решения

Таким образом, параметрические уравнения эллипса с полуосями а и b есть

Полярные координаты - определение и вычисление с примерами решенияИсключив из уравнений (3) параметр получим каноническое уравнение эллипса

Полярные координаты - определение и вычисление с примерами решения

Имея параметрические уравнения линии, можно по точкам построить ее.

Пример:

Полярные координаты - определение и вычисление с примерами решения

Решение:

Составляем таблицу значений:

Полярные координаты - определение и вычисление с примерами решения Полярные координаты - определение и вычисление с примерами решенияНанося точки с соответствующими координатами (х, у) на плоскость Оху и соединяя их линией, получим искомую кривую (рис. 46).

Эта кривая— парабола. В самом деле, исключив параметр t из уравнений (4), получим Полярные координаты - определение и вычисление с примерами решеният. е. каноническое уравнение параболы.

Параметрические уравнения циклоиды

Определение: Циклоидой называется кривая, описываемая точкой окружности, катящейся без скольжения по прямой линии (рис. 47).

Выведем параметрические уравнения циклоиды, приняв прямую за ось Ох, предполагая, что радиус катящейся окружности равен айв начальном положении движущаяся точка М совпадает с началом координат. За параметр t примем угол поворота (в радианах) подвижного радиуса МС окружности относительно вертикального радиуса КС, где К — точка касания окружности с осью Ох (рис. 47). Так как качение окружности происходит без скольжения, то, очевидно, имеем

Полярные координаты - определение и вычисление с примерами решения

Полярные координаты - определение и вычисление с примерами решения

Отсюда на основании рис. 47 для координат текущей точки М циклоиды получаем следующие выражения:

Полярные координаты - определение и вычисление с примерами решения

Таким образом, параметрические уравнения циклоиды есть

Полярные координаты - определение и вычисление с примерами решения

Полярная система координат

Определение 1. Рассмотрим плоскость с прямоугольной декартовой системой координат Оху . Пусть М(х, у) – точка на плоскости, M ≠ 0. Полярными координатами точки М называются числа r − длина ее радиус-вектора (полярный
радиус) и ϕ − угол, образованный радиус-вектором с положительным направлением оси Ох (полярный угол), Полярные координаты - определение и вычисление с примерами решения. Точка О при этом называется
полюсом, а полуось Ох – полярной осью.
Замечание. Зависимость между прямоугольными (х, у) и полярными ( , ) r ϕ
координатами точки М задается в виде: Полярные координаты - определение и вычисление с примерами решения(1)

Полярные координаты - определение и вычисление с примерами решения

Рис.1. Полярные координаты точки.
Полярный полюс О и полярную ось можно выбрать на плоскости и не вводя
прямоугольную систему координат:

Полярные координаты - определение и вычисление с примерами решения

Пример 1.

Построим на плоскости линию, заданную уравнением:
Полярные координаты - определение и вычисление с примерами решения− лемниската.
Решение.

Полярные координаты - определение и вычисление с примерами решения
Вычислим значения r при различных значениях ϕ :
Полярные координаты - определение и вычисление с примерами решения
Проводим лучи из начала координат под углами ϕ к оси Ох и на них откладываем
отрезки длины r , получим :

Полярные координаты - определение и вычисление с примерами решения
Рис.3. Лемниската Полярные координаты - определение и вычисление с примерами решения

Пример 2.

а) Построим кривую Полярные координаты - определение и вычисление с примерами решения− кардиоида. Рассуждая, как в примере 1 получим:
Полярные координаты - определение и вычисление с примерами решения
Полярные координаты - определение и вычисление с примерами решения
Полярные координаты - определение и вычисление с примерами решения
Полярные координаты - определение и вычисление с примерами решения
Замечание. Если в определении 1 отбросить требование 0 ≤ ϕ 0, то формулы (1) будут задавать непрерывное отображение точек плоскости (O, r, ϕ) на точки плоскости (x, O, y).

Полярные координаты - определение и вычисление с примерами решения
При этом, если r > 0, то векторы Полярные координаты - определение и вычисление с примерами решениясонаправлены, если r

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Полярные координаты

Помимо аффинной системы координат и её популярного частного случая – прямоугольной (декартовой) системы, существуют и другие подходы к построению координатной сетки плоскости и пространства. В частности, широкое распространение получила полярная система координат, которая невероятно удобна для решения целого спектра практических задач. И через считанные минуты, не успевши опомниться, вы уже будете уверенно ориентироваться в полярных координатах!

Полярная система координат

Чтобы определить полярную систему координат на плоскости, достаточно зафиксировать начало координат и задать единичный координатный вектор . Точка называется полюсом, а луч , сонаправленный с вектором – полярной осью. Графический шаблон – проще некуда, одна точка, один вектор, одна линия:

На практике вместо вектора можно где-нибудь в углу указать масштаб, например: 1 ед. = 1 см (две тетрадные клетки). По возможности, старайтесь выбирать именно такую, удобную во многих отношениях метрику.

А теперь сама мякотка:

Полярный радиус и полярный угол точки

Любая отличная от начала координат точка плоскости однозначно определяется своим расстоянием от полюса и ориентированным углом между полярной осью и отрезком :

Для самого полюса , а угол не определён. Не напоминает ли это вам кое-что из темы Комплексные числа? 😉

Число называют полярным радиусом точки или первой полярной координатой. Расстояние не может быть отрицательным, поэтому полярный радиус любой точки . Первую полярную координату также обозначают греческой буквой («ро»), но я привык к латинскому варианту, и в дальнейшем буду использовать его.

Число называют полярным углом данной точки или второй полярной координатой. Полярный угол стандартно изменяется в пределах (так называемые главные значения угла). Однако вполне допустимо использовать диапазон , а в некоторых случаях и вовсе возникает прямая необходимость рассмотреть все значения угла от нуля до «плюс бесконечности». Рекомендую, кстати, привыкнуть к радианной мере угла, поскольку оперировать градусами в высшей математике считается не комильфо.

Пару называют полярными координатами точки . Из легко найти и их конкретные значения. Тангенс острого угла прямоугольного треугольника – есть отношение противолежащего катета к прилежащему катету: , следовательно, сам угол: . По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов: , значит, полярный радиус:

Различные точки в полярных координатах

Один пингвин хорошо, а стая – лучше :

Отрицательно ориентированные углы я на всякий случай отметил стрелками, вдруг кто-то из читателей ещё не знал об этой ориентации. При желании можно «прикрутить» к каждому из них 1 оборот ( рад. или 360 градусов) и получить, к слову, удобные табличные значения:

Но недостаток этих «традиционно» ориентированных углов состоит в том, что они слишком далеко (более чем, на 180 градусов) «закручены» против часовой стрелки. Предчувствую вопрос: «почему недостаток и зачем вообще нужны какие-то отрицательные углы?» В математике ценятся самые короткие и рациональные пути. Ну а уж с точки зрения физики направление вращения зачастую имеет принципиальное значение – каждый из нас пытался открыть дверь, дёргая ручку не в ту сторону =)

Порядок и техника построения точек в полярных координатах

Красивые картинки красивы, однако построение в полярной системе координат – занятие достаточно кропотливое. Трудностей не возникает с точками, у которых полярные углы составляют , в нашем примере это точки ; особых хлопот также не доставляют значения, кратные 45 градусам: . Но как правильно и грамотно построить, скажем, точку ?

Потребуется клетчатый листок бумаги, карандаш и следующие чертёжные инструменты: линейка, циркуль, транспортир. В крайнем случае, можно обойтись одной линейкой, а то… и вовсе без неё! Читайте дальше и вы получите ещё одно доказательство, что эта страна непобедима =)

Построить точку в полярной системе координат.

Прежде всего, нужно выяснить градусную меру угла . Если угол малознаком или вас есть сомнения, то всегда лучше воспользоваться таблицей либо общей формулой перевода радианов в градусы. Итак, наш угол составляет (или ).

Начертим полярную систему координат (см. начало урока) и возьмём в руки транспортир. Обладателям круглого инструмента не составит труда отметить 240 градусов, но с большой вероятностью у вас на руках будет полукруглая версия девайса. Проблема полного отсутствия транспортира при наличии принтера и ножниц решается рукоделием.

Откладываем полярный угол с помощью транспортира

Есть два пути: перевернуть листок и отметить 120 градусов, либо «прикрутить» пол оборота и рассмотреть противоположный угол . Выберем взрослый способ и сделаем отметку в 60 градусов:

То ли транспортир лилипутский, то ли клетка гигантская =) Впрочем, чтобы отмерить угол масштаб не важен.

Проводим карандашом тонкую прямую, проходящую через полюс и сделанную отметку:
Чертим направление полярного угла
С углом разобрались, на очереди полярный радиус. Берём циркуль и по линейке устанавливаем его раствор в 3 единицы, чаще всего, это, конечно же, сантиметры:
Откладываем полярный радиус с помощью циркуля
Теперь аккуратно устанавливаем иглу на полюс, и вращательным движением выполняем небольшую засечку (красный цвет). Искомая точка построена:
Искомая точка построена
Можно обойтись без циркуля, приложив линейку непосредственно к построенной прямой и отмерив 3 сантиметра. Но, как мы увидим позже, в задачах на построение в полярной системе координат типична ситуация, когда нужно отметить две или бОльшее количество точек с одним и тем же полярным радиусом, поэтому эффективнее закалять металл. В частности, на нашем чертеже, развернув ногу циркуля на 180 градусов, легко сделать вторую засечку и построить симметричную относительно полюса точку . На ней давайте и отработаем материал следующего параграфа:

Взаимосвязь прямоугольной и полярной системы координат

Переход от полярных координат к декартовым координатам и наоборот

Очевидным образом присоединим к полярной системе координат «школьную» систему и изобразим на чертеже точку :

Такое присоединение всегда полезно держать в голове, когда выполняете чертёж в полярных координатах. Хотя, волей-неволей оно напрашивается и без лишнего намёка.

Установим взаимосвязь полярных и декартовых координат на примере конкретной точки . Рассмотрим прямоугольный треугольник , в котором гипотенуза равна полярному радиусу: , а катеты – «иксовой» и «игрековой» координатам точки в декартовой системе координат: .

Синус острого угла – есть отношение противолежащего катета к гипотенузе:

Косинус острого угла – есть отношение прилежащего катета к гипотенузе:

Заодно повторили определения синуса, косинуса (и чуть ранее тангенса) из программы 9 класса общеобразовательной школы.

Пожалуйста, занесите в свой справочник рабочие формулы , выражающие декартовы координаты точки через её полярные координаты – с ними нам придётся столкнуться ещё неоднократно, и в следующий раз прямо сейчас =)

Найдём координаты точки в прямоугольной системе координат:

Полученные формулы открывают ещё одну лазейку в задаче построения, когда можно обойтись вообще без транспортира: сначала находим декартовы координаты точки (понятно, на черновике), затем мысленно находим нужное место на чертеже и отмечаем данную точку. На заключительном этапе проводим тонкую прямую, которая проходит через построенную точку и полюс. В результате получается, что угол якобы был отмерян транспортиром.

Забавно, что совсем отчаянные студенты, могут обойтись даже без линейки, используя вместо неё ровный край учебника, тетради или зачётной книжки – ведь о метрике позаботились производители тетрадей, 1 клетка = 5 миллиметров.

Напомнило мне всё это известный анекдот, в котором находчивые лётчики прокладывали курс по пачке Беломора =) Хотя, шутки шутками, а анекдот не так далёк от реальности, помнится, на одном из внутренних рейсов по РФ в лайнере отказали все навигационные приборы, и экипаж успешно посадил борт при помощи обычного стакана с водой, который показывал угол наклона самолёта относительно земли. А лётная полоса – вот она, из лобового стекла виднА.

Используя процитированную в начале урока теорему Пифагора, легко получить и обратные формулы: , следовательно:

Сам угол «фи» стандартно выражается через арктангенс – абсолютно так же как и аргумент комплексного числа со всеми его заморочками.

Вторую группу формул также целесообразно поместить в свой справочный багаж.

После подробного разбора полётов с отдельно взятыми точками перейдём к закономерному продолжению темы:

Уравнение линии в полярных координатах

По существу, уравнение линии в полярной системе координат представляет собой функцию полярного радиуса от полярного угла (аргумента). При этом полярный угол учитывается в радианах (!) и непрерывно принимает значения от до (иногда следует рассмотреть до бесконечности, или же в ряде задач для удобства от до ). Каждому значению угла «фи», которое входит в область определения функции , соответствует единственное значение полярного радиуса.

Полярную функцию можно сравнить со своеобразным радаром – когда луч света, исходящий из полюса, вращается против часовой стрелки и «обнаруживает» (прорисовывает) линию.

Хрестоматийная линия – спираль Архимеда

Дежурным примером полярной кривой является Архимедова спираль . На следующем рисунке изображен её первый виток – когда полярный радиус вслед за полярным углом принимает значения от 0 до :

Далее, пересекая полярную ось в точке , спираль продолжит раскручиваться, бесконечно далеко удаляясь от полюса. Но подобные случаи на практике встречаются довольно редко; более типичная ситуация, когда на всех последующих оборотах мы «пройдёмся по той же самой линии», которая получена в диапазоне .

В первом же примере мы сталкиваемся и с понятием области определения полярной функции: поскольку полярный радиус неотрицателен , то отрицательные углы здесь рассматривать нельзя.

! Примечание: в ряде случаев принято использовать обобщённые полярные координаты, где радиус может быть отрицательным, и такой подход мы вкратце изучим чуть позже

Кроме спирали Архимеда, есть множество других известных кривых, но искусством, как говорится, сыт не будешь, поэтому я подобрал примеры, которые очень часто встречаются в реальных практических заданиях.

Сначала простейшие уравнения и простейшие линии:

Уравнение вида задаёт исходящий из полюса луч. Действительно, вдумайтесь, если значение угла всегда (каким бы ни было «эр») постоянно, то какая это линия?

Примечание: в обобщённой полярной системе координат данное уравнение задаёт прямую, проходящую через полюс

Уравнение вида определяет… догадайтесь с первого раза – если для любого угла «фи» радиус остаётся постоянным? Фактически это определение окружности с центром в полюсе радиуса .

Например, . Для наглядности найдём уравнение данной линии в прямоугольной системе координат. Используя полученную в предыдущем параграфе формулу , проведём замену:

Возведём обе части в квадрат:

уравнение окружности с центром в начале координат радиуса 2, что и требовалось проверить.

Со времён создания и релиза статьи о линейной зависимости и линейной независимости векторов я получил несколько писем от посетителей сайта, которые задавали вопрос в духе: «вот есть простая и удобная прямоугольная система координат, зачём нужен ещё какой-то косоугольный аффинный случай?». Ответ прост: математика стремится объять всё и вся! Кроме того, в той или иной ситуации немаловажно удобство – как видите, с окружностью значительно выгоднее работать именно в полярных координатах по причине предельной простоты уравнения .

А иногда математическая модель предвосхищает научные открытия. Так, в своё время ректор Казанского университета Н.И. Лобачевский строго доказал, через произвольную точку плоскости можно провести бесконечно много прямых, параллельных данной. В результате он был ошельмован всем научным миром, но… опровергнуть данный факт никто не смог. Только спустя доброе столетие астрономы выяснили, что свет в космосе распространяется по кривым траекториям, где и начинает работать неевклидова геометрия Лобачевского, формально разработанная им задолго до этого открытия. Предполагается, что это свойство самого пространства, кривизна которого нам незаметна ввиду малых (по астрономическим меркам) расстояний.

Рассмотрим более содержательные задачи на построение:

Решение: в первую очередь найдём область определения. Так как полярный радиус неотрицателен, то должно выполняться неравенство . Можно вспомнить школьные правила решения тригонометрических неравенств, но в простых случаях как этот, я советую более быстрый и наглядный метод решения:

Представьте график косинуса. Если он ещё не успел отложиться в памяти, то найдите его на странице Графики элементарных функций. О чём нам сообщает неравенство ? Оно сообщает нам о том, что график косинуса должен располагаться не ниже оси абсцисс. А это происходит на отрезке . И, соответственно, интервал не подходит.

Таким образом, область определения нашей функции: , то есть график расположен справа от полюса (по терминологии декартовой системы – в правой полуплоскости).

В полярных координатах часто бывает смутное представление о том, какую линию определяет то или иное уравнение, поэтому чтобы её построить, необходимо найти принадлежащие ей точки – и чем больше, тем лучше. Обычно ограничиваются десятком-другим (а то и меньшим количеством). Проще всего, конечно же, взять табличные значения угла. Для бОльшей ясности к отрицательным значениям я буду «прикручивать» один оборот:

В силу чётности косинуса соответствующие положительные значения можно заново не считать:

Поточечное построение линии в полярных координатах

Изобразим полярную систему координат и отложим найденные точки, при этом одинаковые значения «эр» удобно откладывать за один раз, делая парные засечки циркулем по рассмотренной выше технологии:

В принципе, линия отчётливо прорисовывается, но чтобы стопроцентно подтвердить догадку, давайте найдём её уравнение в декартовой системе координат. Можно применить недавно выведенные формулы , но я расскажу вам о более хитром приёме. Обе части уравнения искусственно домножаем на «эр»: и используем более компактные формулы перехода :

Выделяя полный квадрат, приводим уравнение линии к узнаваемому виду:

уравнение окружности с центром в точке , радиуса 2.

Окружность в полярной системе координат

Коль скоро по условию требовалось просто выполнить построение и всё, плавно соединяем найденные точки линией:

Готово. Ничего страшного, если получится немного неровно, вы же не обязаны были знать, что это окружность 😉

Почему мы не рассмотрели значения угла вне промежутка ? Ответ прост: нет смысла. Ввиду периодичности функции нас ждёт бесконечный бег по построенной окружности.

Несложно провести нехитрый анализ и прийти к выводу, что уравнение вида задаёт окружность диаметра с центром в точке . Образно говоря, все такие окружности «сидят» на полярной оси и обязательно проходят через полюс. Если же , то весёлая компания перекочует налево – на продолжение полярной оси (подумайте, почему).

Похожая задача для самостоятельного решения:

Построить линию и найти её уравнение в прямоугольной системе координат.

Систематизируем порядок решения задачи:

В первую очередь находим область определения функции, для этого удобно посмотреть на синусоиду, чтобы сразу же понять, где синус неотрицателен.

На втором шаге рассчитываем полярные координаты точек, используя табличные значения углов; проанализируйте, нельзя ли сократить количество вычислений?

На третьем шаге откладываем точки в полярной системе координат и аккуратно соединяем их линией.

И, наконец, находим уравнение линии в декартовой системе координат.

Примерный образец решения в конце урока.

Общий алгоритм и технику построения в полярных координатах мы детализируем
и существенно ускорим во второй части лекции, но перед этим познакомимся ещё с одной распространённой линией:

Полярная роза

Совершенно верно, речь пойдёт о цветке с лепестками:

Построить линии, заданные уравнениями в полярных координатах

Существует два подхода к построению полярной розы. Сначала пойдём по накатанной колее, считая, что полярный радиус не может быть отрицательным:

Решение:

а) Найдём область определения функции:

Такое тригонометрическое неравенство тоже нетрудно решить графически: из материалов статьи Геометрические преобразования графиков известно, что если аргумент функции удвоить, то её график сожмётся к оси ординат в 2 раза. Пожалуйста, найдите график функции в первом же примере указанного урока. Где данная синусоида находится выше оси абсцисс? На интервалах . Следовательно, неравенству удовлетворяют соответствующие отрезки, и область определения нашей функции: .

Вообще говоря, решение рассматриваемых неравенств представляет собой объединение бесконечного количества отрезков, но, повторюсь, нас интересует только один период.

Возможно, некоторым читателям более лёгким покажется аналитический способ нахождения области определения, условно назову его «нарезка круглого пирога». Резать будем на равные части и, прежде всего, найдём границы первого куска. Рассуждаем следующим образом: синус неотрицателен, когда его аргумент находится в пределах от 0 до рад. включительно. В нашем примере: . Разделив все части двойного неравенства на 2, получаем искомый промежуток:

Теперь начинаем последовательно «нарезать равные куски по 90 градусов» против часовой стрелки:

– найденный отрезок , понятно, входит в область определения;

– следующий интервал – не входит;

– следующий отрезок – входит;

– и, наконец, интервал – не входит.

Прямо, как по ромашке – «любит, не любит, любит, не любит» =) С тем отличием, что тут не гадание. Да, прямо какая-то любовь по-китайски получается….

Итак, и линия представляет собой розу с двумя одинаковыми лепестками. Чертёж вполне допустимо выполнить схематически, однако крайне желательно правильно найти и отметить вершины лепестков. Вершинам соответствуют середины отрезков области определения, которые в данном примере имеют очевидные угловые координаты . При этом длины лепестков составляют:

Двухлепестковая роза в полярной системе координат

Вот закономерный результат заботливого садовника:

Следует отметить, что длину лепестка легко сразу усмотреть из уравнения – так как синус ограничен: , то максимальное значение «эр» заведомо не превзойдёт двух.

б) Построим линию, заданную уравнением . Очевидно, что длина лепестка этой розы тоже равна двум, но, прежде всего, нас интересует область определения. Применим аналитический метод «нарезки»: синус неотрицателен, когда его аргумент находится в пределах от нуля до «пи» включительно, в данном случае: . Делим все части неравенства на 3 и получаем первый промежуток:

Далее начинаем «нарезку пирога кускам» по рад. (60 градусов):
– отрезок войдёт в область определения;
– интервал – не войдёт;
– отрезок – войдёт;
– интервал – не войдёт;
– отрезок – войдёт;
– интервал – не войдёт.

Процесс успешно завершён на отметке 360 градусов.

Таким образом, область определения: .

Проводимые действия полностью либо частично несложно осуществлять и мысленно.

Построение. Если в предыдущем пункте всё благополучно обошлось прямыми углами и углами в 45 градусов, то здесь придётся немного повозиться. Найдём вершины лепестков. Их длина была видна с самого начала задания, осталось вычислить угловые координаты, которые равны серединам отрезков области определения:

Обратите внимание, что между вершинами лепестков должны обязательно получиться равные промежутки, в данном случае 120 градусов.

Трёхлепестковая роза в полярной системе координат

Чертёж желательно разметить на 60-градусные секторы (отграничены зелёными линиями) и провести направления вершин лепестков (серые линии). Сами вершины удобно наметить с помощью циркуля – единожды отмерять расстояние в 2 единицы и нанести три засечки на прочерченных направлениях в 30, 150 и 270 градусов:

Готово. Понимаю, что занятие хлопотное, но если хотите всё оформить по уму, то придётся потратить время.

Сформулируем общую формулу: уравнение вида , – натуральное число), задаёт полярную -лепестковую розу, длина лепестка которой равна .

Например, уравнение задаёт четырёхлистник с длиной лепестка в 5 единиц, уравнение – 5-лепестковую розу с длиной лепестка в 3 ед. и т.д.

О втором подходе я хотел вообще умолчать, однако не могу пройти мимо – уж слишком он распространён. Суть состоит в том, что полярная роза часто рассматривается в обобщённых полярных координатах, где полярный радиус может быть отрицательным. Вопрос области определения отпадает, но появляются другие приколы.

Во-первых, разберёмся, как строить точки с отрицательным значением «эр». Если , то нужно мысленно найти точку с таким же углом, но радиуса и отобразить её симметрично относительно полюса. Вернёмся к первой полярной розе и рассмотрим интервал , на котором полярный радиус отрицателен. Как, например, изобразить точку ? Мысленно находим точку (левый верхний сектор) и отображаем её симметрично относительно полюса в точку . Таким образом, когда угол принимает значения из интервала , то прорисовывается ещё один лепесток в правом нижнем секторе:
В обобщенной полярной системе координат лепесток с отрицательным полярным радиусом отображаем симметрично из левого верхнего сектора – в правый нижний
И, соответственно, когда угол проходит значения , то прорисовывается 4-й лепесток в противоположном (левом верхнем) секторе:
И наоборот, из правого нижнего сектора – в левый верхний
Интересно отметить, что при таком подходе вторая полярная роза сохраняет своё количество лепестков. А происходит это по одной простой причине: когда угол проходит пустующие секторы (ещё раз посмотрите на чертёж!), то полярный радиус принимает отрицательные значения и из этих пустых секторов точки отображаются напротив, ровнёхонько накладываясь на «легальные» лепестки.

Сформулируем правило розы для обобщенной системы координат: уравнение вида , – натуральное) задаёт полярную розу с длиной лепестка , при этом:

1) если — чётное, то роза имеет ровно лепестков;
2) если — нечётное, то роза имеет ровно лепестков.

Например, роза имеет 8 лепестков, роза – пять лепестков, роза – 12 лепестков, роза – 7 лепестков и т.д.

А почему закономерность столь необычна, я только что проиллюстрировал геометрически.

Какой способ выбрать, решать вам, …но я бы не особо рекомендовал использовать обобщенные полярные координаты – у преподавателя могут появиться дополнительные вопросы на счет отрицательных значений полярного радиуса (а то и вообще всё будет забраковано по этой причине)

Короткая задача для самостоятельного решения:

Построить линии, заданные уравнением в полярных координатах

Сформулировать общее правило о количестве и длине лепестков полярной розы вида , – натуральное)

В моём образце решение проведено 1-м способом. Повторим порядок действий:

– Сначала находим область определения. При этом для лучшего понимания своих действий рекомендую соотносить аналитический способ «нарезки» с графической интерпретацией. По материалам урока Геометрические преобразования графиков выясните, как выглядят, и при необходимости начертите графики функций .

– Находим угловые координаты вершин лепестков – они расположены ровно посередине промежутков области определения.

– Выполняем чертёж. Пойдёт схематическая версия, однако желательно разметить найденные секторы и угловые направления вершин лепестков (в случае необходимости – с помощью транспортира). Вершины удобно засекать циркулем, предварительно установив раствор, равный длине лепестка.

Существуют более солидные и общие формулы окружности, полярной розы и желающие могут с ними ознакомиться в других источниках информации. Я лишь ограничился практически значимыми (с моей точки зрения) примерами.

Предлагаю перейти ко 2-й части занятия под названием Как построить линию в полярной системе координат?, где мы продолжим рассматривать типовые задачи, и усовершенствуем свои навыки.

Решения и ответы:

Окружность, выраженная через синус полярного угла

Пример 3: Решение: найдём область определения:

Вычислим полярные координаты точек, принадлежащих данной линии:

Выполним чертёж:

Найдём уравнение линии в декартовой системе координат:

Проведём замены :

Выделим полный квадрат:

– окружность с центром в точке (координаты декартовы!) радиуса .

Дополнительная информация: уравнение вида задаёт окружность диаметра с центром в точке .

Пример 5: Решение:
а) Найдём область определения: косинус неотрицателен, когда его аргумент находится в пределах от до рад. включительно. В данном случае: . Или:
.
Таким образом:
– отрезок принадлежит области определения;
– интервал – не принадлежит;
– отрезок – принадлежит;
– интервал – не принадлежит.
Область определения: .
Роза имеет два лепестка, вершины которых находятся на полярной оси и её продолжении, длина лепестка равна :
Двулистник в полярных координатах, выраженный через косинус
б) область определения: . Роза имеет три лепестка единичной длины с вершинами, имеющими следующие угловые координаты:

Выполним чертёж:
Трёхлистник в полярных координатах, выраженный через косинус
Уравнение вида , – натуральное), задаёт полярную
-лепестковую розу, длина лепестка которой равна . Если рассматривается обобщенная полярная система координат, то при чётном значения «ка» количество лепестков удваивается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *