Свойства синуса, косинуса, тангенса и котангенса
В этой статье будут рассмотрены три основных свойства тригонометрических функций: синуса, косинуса, тангенса и котангенса.
Первое свойство — знак функции в зависимости от того, какой четверти единичной окружности приналдежит угол α . Второе свойство — периодичность. Согласно этому свойству, тигонометрическая функция не меняет значения при изменении угла на целое число оборотов. Третье свойсто определяет, как меняются значения функций sin, cos, tg, ctg при противоположных углах α и — α .
Знаки тригонометрических функций по четвертям
Часто в математическом тексте или в контексте задачи можно встретить фразу: «угол первой, второй, третьей или четвертой координатной четверти». Что это такое?
Обратимся к единичной окружности. Она разделена на четыре четверти. Отметим на окружности начальную точку A 0 ( 1 , 0 ) и, поворачивая ее вокруг точки O на угол α , попадем в точку A 1 ( x , y ) . В зависимости от того, в какой четверти будет лежать точка A 1 ( x , y ) , угол α будет называться углом первой, второй, третьей и четвертой четвети соответственно.
Для наглядности приведем иллюстрацию.
Угол α = 30 ° лежит в первой четверти. Угол — 210 ° является углом второй четверти. Угол 585 ° — угол третьей четверти. Угол — 45 ° — это угол четвертой четверти.
При этом углы ± 90 ° , ± 180 ° , ± 270 ° , ± 360 ° не принадлежат ни одной четверти, так как лежат на координатных осях.
Теперь рассмотрим знаки, которые принимают синус, косинус, тангенс и котангенс в зависимости от того, в какой четверти лежит угол.
Чтобы определить знаки синуса по четвертям, вспомним опредение. Синус — это ордината точки A 1 ( x , y ) . Из рисунка видно, что в первой и второй четвертях она положительна, а в третьей и четверной — отрицательна.
Косинус — это абсцисса точки A 1 ( x , y ) . В соответсии с этим, определяем знаки косинуса на окружности. Косинус положителен в первой и четвертой четвертях, а отрицателен во второй и третьей четверти.
Для определения знаков тангенса и котангенса по четвертям также вспоминаем определения этих тригонометрических функций. Тангенс — отношение ординаты точки к абсциссе. Значит, по правилу деления чисел с разными знаками, когда ордината и абсцисса имеют одинаковые знаки, знак тангенса на окружности будет положительным, а когда ордината и абсцисса имеют разные знаки — отрицательным. Аналогично определяются знаки котангенса по четвертям.
- Синус угла α имеет знак плюс в 1 и 2 четвертях, знак минус — в 3 и 4 четвертях.
- Косинус угла α имеет знак плюс в 1 и 4 четвертях, знак минус — в 2 и 3 четвертях.
- Тангенс угла α имеет знак плюс в 1 и 3 четвертях, знак минус — в 2 и 4 четвертях.
- Котангенс угла α имеет знак плюс в 1 и 3 четвертях, знак минус — в 2 и 4 четвертях.
Свойство периодичности
Свойство периодичности — одно из самых очевидных свойств тригонометрических функций.
При изменении угла на целое число полных оборотов значения синуса, косинуса, тангенса и котангенса данного угла остаются неизменными.
Действительно, при изменении угла на целое число оборотов мы всегда будем попадать из начальной точки A на единичной окружности в точку A 1 с одними и теми же координатами. Соответственно, не будут меняться и значения синуса, косинуса, тангенса и котангенса.
Математически данное свойство записывается так:
sin α + 2 π · z = sin α cos α + 2 π · z = cos α t g α + 2 π · z = t g α c t g α + 2 π · z = c t g α
Какое применение на практике находит это свойство? Свойство периодичности, как и формулы приведения, часто используется для вычисления значений синусов, косинусов, тангенсов и котангенсов больших углов.
sin 13 π 5 = sin 3 π 5 + 2 π = sin 3 π 5
t g ( — 689 ° ) = t g ( 31 ° + 360 ° · ( — 2 ) ) = t g 31 ° t g ( — 689 ° ) = t g ( — 329 ° + 360 ° · ( — 1 ) ) = t g ( — 329 ° )
Свойства синусов, косинусов, тангенсов и котангенсов противоположных углов
Вновь обратимся к единичной окружности.
Точка A 1 ( x , y ) — результат поворота начальной точки A 0 ( 1 , 0 ) вокруг центра окружности на угол α . Точка A 2 ( x , — y ) — результат поворота начальной точки на угол — α .
Точки A 1 и A 2 симметричны относительно оси абсцисс. В случае, когда α = 0 ° , ± 180 ° , ± 360 ° точки A 1 и A 2 совпадают. Пусть одна точка имеет координаты ( x , y ) , а вторая — ( x , — y ) . Вспомним определения синуса, косинуса, тангенса, котангенса и запишем:
sin α = y , cos α = x , t g α = y x , c t g α = x y sin — α = — y , cos — α = x , t g — α = — y x , c t g — α = x — y
Отсюда следует свойство синусов, косинусов, тангенсов и котангенсов противоположных углов.
Свойство синусов, косинусов, тангенсов и котангенсов противоположных углов
sin — α = — sin α cos — α = cos α t g — α = — t g α c t g — α = — c t g α
Согласно этому свойству, справедливы равенства
sin — 48 ° = — sin 48 ° , c t g π 9 = — c t g — π 9 , cos 18 ° = cos — 18 °
Рассмотренное свойство часто используется при решении практических задач в случаях, когда нужно избавиться от отрицательных знаков углов в агрументах тригонометрических функций.
Знаки тригонометрических функций
Разберемся, при каких значениях синус, косинус и тангенс положительны, а при каких — отрицательны. Согласно определению,
— это ордината точки на тригонометрической окружности, соответствующей числу Поэтому если точка на окружности лежит выше оси абсцисс, и если точка на окружности лежит ниже оси абсцисс (рис. 6.6а). На рис. 6.66 аналогичным образом изображено, когда положителен и когда отрицателен
По этой ссылке вы найдёте полный курс лекций по высшей математике:
- Увидеть, когда положителен, а когда отрицателен проще всего с помощью оси тангенсов: положителен, если точка на окружности, соответствующая числу лежит в первой или третьей четверти, и отрицателен, если эта точка лежит во второй или четвертой четверти. Схематически это изображено на рис. 6.7.
Простейшие формулы
мы установили для острых углов такую формулу:
Эта же формула верна и в случае, когда — любое число. В самом деле, пусть — точка на тригонометрической окружности, соответствующая числу (рис. 7.1). Тогда имеет координаты Однако всякая точка лежащая на окружности единичного радиуса с центром в начале координат, удовлетворяет уравнению откуда что и требовалось.
Итак, формула вытекает из уравнения окружности. Может показаться, что тем самым для острых углов мы дали новое доказательство этой формулы (по сравнению с указанным в § 3, где мы пользовались теоремой Пифагора). Отличие, однако, чисто внешнее: при выводе уравнения окружности используется та же теорема Пифагора.
Возможно вам будут полезны данные страницы:
Для острых углов мы получали и другие формулы, например Для произвольных углов эта формула в таком виде верна быть не может: согласно общепринятому пониманию символа правая часть всегда неотрицательна, в то время как левая часть вполне может быть и отрицательной. Чтобы формула была верна при всех надо ее возвести в квадрат.
Получится равенство: Докажем, что эта формула верна при всех
Пример:
Выведите все формулы, приведенные ниже, из определений и формулы (некоторые из них мы уже доказали):
Эти формулы позволяют, зная значение одной из тригонометрических функций данного числа, почти найти все остальные. Пусть, например, мы знаем, что Тогда так что равен или или Чтобы узнать, какому именно из этих двух чисел равен нужна дополнительная информация.
Периоды тригонометрических функций
Числам соответствует одна и та же точка на тригонометрической окружности (если пройти по тригонометрической окружности лишний круг, то придешь туда, где был). Отсюда вытекают такие тождества, о которых уже шла речь в §5:
В связи с этими тождествами мы уже употребляли термин «период». Дадим теперь точные определения.
Определение. Число называют периодом функции если для всех верны равенства (подразумевается, что и входят в область определения функции, если в нее входит Функцию называют периодической, если она имеет период (хотя бы один).
Периодические функции естественно возникают при описании колебательных процессов.
Вот еще примеры:
1) Пусть —угол отклонения качающегося маятника часов от вертикали в момент Тогда ( — периодическая функция от
2) Напряжение («разность потенциалов», как сказал бы физик) между двумя гнездами розетки в сети переменного тока, если его рассматривать как функцию от времени, является периодической функцией
3) Пусть мы слышим музыкальный звук. Тогда давление воздуха в данной точке—периодическая функция от времени.
Если функция имеет период то периодами этой функции будут и числа одним словом, все числа где —целое число, не равное нулю. В самом деле, проверим, например, что
Определение. Наименьшим положительным периодом функции называется — в соответствии с буквальным смыслом слов — такое положительное число что — период и ни одно положительное число, меньшее периодом уже не является.
Периодическая функция не обязана иметь наименьший положительный период (например, функция, являющаяся постоянной, имеет периодом вообще любое число и, стало быть, наименьшего положительного периода у нее нет). Можно привести примеры и непостоянных периодических функций, не имеющих наименьшего положительного периода. Тем не менее в большинстве интересных случаев наименьший положительный период у периодических функций существует.
В частности, наименьший положительный период как синуса, так и косинуса равен Докажем это, например, для функции Пусть вопреки тому, что мы утверждаем, у синуса есть такой период что При имеем Будем теперь увеличивать В точке значение синуса должно быть также равно 1. Но в следующий раз синус будет равен 1 только при Поэтому период синуса быть меньше не может. Доказательство для косинуса аналогично.
Наименьший положительный период функции, описывающей колебания (как в наших примерах 1-3), называется просто периодом этих колебаний.
Поскольку число является периодом синуса и косинуса, оно будет также периодом тангенса и котангенса. Однако для этих функций — не наименьший период: наименьшим положительным периодом тангенса и котангенса будет В самом деле, точки, соответствующие числам на тригонометрической окружности, диаметрально противоположны: от точки до точки надо пройти расстояние в точности равное половине окружности. Теперь, если воспользоваться определением тангенса и котангенса с помощью осей тангенсов и котангенсов, равенства станут очевидными (рис. 8.1). Легко проверить (мы предложим это сделать в задачах), что — действительно наименьший положительный период тангенса и котангенса. ните, имеется в виду наименышии положительный период или просто один из периодов.
Одно замечание по поводу терминологии. Часто слова «период функции» употребляют в значении «наименьший положительный период». Так что если на экзамене у вас спросят: «Является ли периодом функции синус?», не торопитесь с ответом, а уточните,
имеется в виду наименьший положительный период или просто один из периодов.
Тангенс
Аргументом тангенса может быть:
— как число или выражение с Пи: \(1,3\), \(\frac<π><4>\), \(π\), \(-\frac<π><3>\) и т.п.
— так и угол в градусах: \(45^°\), \(360^°\),\(-800^°\), \(1^° \) и т.п.
Для обоих случаев тангенс вычисляется одинаковым способом – либо через значения синуса и косинуса, либо через тригонометрический круг (см. ниже).
Тангенс острого угла
Тангенс можно определить с помощью прямоугольного треугольника — он равен отношению противолежащего катета к прилежащему.
1) Пусть дан угол и нужно определить тагенс этого угла.
2) Достроим на этом угле любой прямоугольный треугольник.
3) Измерив, нужные стороны, можем вычислить тангенс.
Вычисление тангенса числа или любого угла
Для чисел, а также для тупых, развернутых углов и углов больших \(360°\) тангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:
Пример. Вычислите \(tg\:0\).
Решение: Чтобы найти тангенс нуля нужно найти сначала синус и косинус \(0\). И то, и другое найдем с помощью тригонометрического круга :
Точка \(0\) на числовой окружности совпадает с \(1\) на оси косинусов, значит \(cos\:0=1\). Если из точки \(0\) на числовой окружности провести перпендикуляр к оси синусов, то мы попадем в точку \(0\), значит \(sin\:0=0\). Получается: \(tg\:0=\) \(\frac
Пример. Вычислите \(tg\:(-765^\circ)\).
Решение: \(tg\: (-765^\circ)=\) \(\frac
Что бы вычислить синус и косинус \(-765^°\). Отложим \(-765^°\) на тригонометрическом круге. Для этого надо повернуть в отрицательную сторону на \(720^°\) , а потом еще на \(45^°\).
Однако можно определять тангенс и напрямую через тригонометрический круг — для этого надо на нем построить дополнительную ось:
Прямая проходящая через начало отсчета на числовой окружности и параллельная оси ординат (синусов) называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.
Ось тангенсов – это фактически копия оси синусов, только сдвинутая. Поэтому все числа на ней расставляются так же как на оси синусов.
Чтобы определить тангенс с помощью числовой окружности, нужно:
1) Отметить соответствующую аргументу тангенса точку на числовой окружности.
2) Провести прямую через эту точку и начало координат и продлить её до оси тангенсов.
3) Найти координату пересечения этой прямой и оси тангенсов.
Пример. Вычислите \(tg\:\frac<π><4>\).
Решение:
1)Отмечаем \(\frac<π><4>\) на окружности.
2) Проводим через данную точку и начало координат прямую.
3) В данном случае координату долго искать не придется – она равняется \(1\).
Пример. Вычислите \(tg\: 45°\) и \(tg\: (-240°)\).
Решение:
Для угла \(45°\) (\(∠KOA\)) тангенс будет равен \(1\), потому что именно в таком значении сторона угла, проходящая через начало координат и точку \(A\), пересекает ось тангесов. А для угла \(-240°\) (\(∠KOB\)) тангенс равен \(-\sqrt<3>\) (приблизительно \(-1,73\)).
Значения для других часто встречающихся в практике углов смотри в тригонометрической таблице.
В отличие от синуса и косинуса значение тангенса не ограничено и лежит в пределах от \(-∞\) до \(+∞\), то есть может быть любым.
При этом тангенс не определен для:
1) всех точек \(A\) (значение в Пи: …\(-\) \(\frac<7π><2>\) ,\(-\) \(\frac<3π><2>\) , \(\frac<π><2>\) , \(\frac<5π><2>\) , \(\frac<9π><2>\) …; и значение в градусах: …\(-630°\),\(-270°\),\(90°\),\(450°\),\(810°\)…)
2) всех точек \(B\) (значение в Пи: …\(-\) \(\frac<9π><2>\) ,\(-\) \(\frac<5π><2>\) ,\(-\) \(\frac<π><2>\) , \(\frac<3π><2>\) , \(\frac<7π><2>\) …; и значение в градусах: …\(-810°\),\(-450°\),\(-90°\),\(270°\)…) .
Так происходит потому, что прямая проходящая через начало координат и любую из этих точек никогда не пересечет ось тангенсов, т.к. будет идти параллельно ей. Поэтому в этих точках тангенс – НЕ СУЩЕСТВУЕТ (для всех остальных значений тангенс может быть найден).
Из-за этого при решении тригонометрических уравнений и неравенств с тангенсом необходимо учитывать ограничения на ОДЗ .
Знаки по четвертям
С помощью оси тангенсов легко определить знаки по четвертям тригонометрической окружности. Для этого надо взять любую точку на четверти и определить знак тангенса для нее описанным выше способом. У всей четверти знак будет такой же.
Для примера на рисунке нанесены две зеленые точки в I и III четвертях. Для них значение тангенса положительно (зеленые пунктирные прямые приходят в положительную часть оси), значит и для любой точки из I и III четверти значение тангенса будет положительно (знак плюс).
С двумя фиолетовыми точками в II и IV четвертях – аналогично, но с минусом.
Связь с другими тригонометрическими функциями:
— котангенсом того же угла: формулой \(ctg\:x=\) \(\frac<1>
Другие наиболее часто применяемые формулы смотри здесь .
.3. СВОЙСТВА ФУНКЦИИ y=tgx И ЕЕ ГРАФИК
Этот результат можно получить и геометрически. Значения тангенса – это ордината соответствующей точки на линии тангенсов (рис.91). Поскольку точки Aи B единичной окружности лежат на прямых ОА и ОВ, параллельных линии тангенсов, мы не сможем найти значение тангенса дляx, kZ.
Для всех других значений аргумента мы можем найти соответствующую точку на линии тангенсов и ее ординату — тангенс. Следовательно, все
Значенияx входят в область определения функции y=tgx.
Для точек единичной окружности (которые не совпадают с точками А и В) ординаты соответствующих т
очек на линии тангенсов принимают
все значения до +, поскольку для любого действительного числа
мы можем указать соответствующую точку на оси ординат, а значит, и соответствующую точку на оси тангенсов. Учитывая, что точка О лежит
внутри окружности, а точка вне ее (или на самой окружности), получаем, что прямая имеет с окружностью хотя бы одну общую точку
(на самом деле их две). Следовательно, для любого действительного числа
найдется аргумент х, такой, что tan x равен данному действительному числу.
Поэтому область значений функции y= tg x — все действительные числа,
то есть R. Это можно записать так: E (=tgx) = R. Отсюда следует, что наибольшего и наименьшего значений функция tan x не имеет.
Как было показано в § 13, тангенс — нечетная функция:tg(-x)=tg x, следовательно, ее график симметричен относительно начала координат.
Тангенс — периодическая функция с наименьшим положительным периодом
Поэтому при построении графика
этой функции достаточно построить график на любом промежутке длиной π,
а потом полученную линию перенести параллельно вправо и влево вдоль оси
Ox на расстоянияkT = πk, где k — любое натуральное число.
Чтобы найти точки пересечения графика функции с осями координат,
напомним, что на оси Oy значение x = 0. Тогда соответствующее значение
y = tg 0 = 0, то есть график функции y = tg x проходит через начало координат.
На оси Ox значение y = 0. Поэтому необходимо найти такие значения x,
при которых tg x, то есть ордината соответствующей точки линии тангенсов, равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки C или D, то есть при x = πk, k ∈ Z.
Промежутки знакопостоянства. Как было обосновано в § 13, значения
функции тангенс положительны (то есть ордината соответствующей точкилинии тангенсов положительна) в І и ІІІ четвертях. Следовательно, tgx > 0 при
а также, учитывая период, при всех
Значения функции тангенс отрицательны (то есть ордината соответствующей точки линии тангенсов отрицательна) во ІІ и ІV четвертях. Такимобразом,
Промежутки возрастания и убывания.
Учитывая периодичность функции tgx (период T = π), достаточно исследовать ее на возрастание и убывание на любом промежутке длиной π,
например на промежутке . Если x (рис. 92), то при увеличении аргумента x (x2>x1) ордината соответствующей точки линии
тангенсов увеличивается (то есть tgx2>tgx1). Таким образом, на этом
промежутке функция tgx возрастает. Учитывая периодичность функции
tgx, делаем вывод, что она возрастает также на каждом из промежутков
Проведенное исследование позволяет обоснованно построить график
функции y = tg x. Учитывая периодичность этой функции (с периодом π),
сначала построим график на любом промежутке длиной π, например на промежутке . Для более точного построения точек графика воспользуемся также тем, что значение тангенса — это ордината соответствующей точки
линии тангенсов. На рисунке 93 показано построение графика функции
y = tg x на промежутке.
Далее, учитывая периодичность тангенса (с периодом π), повторяем вид
графика на каждом промежутке длиной π (то есть параллельно переносим
график вдоль оси Ох на πk, где k — целое число).
Получаем график, приведенный на рисунке 94, который называется тангенсоидой.
14.4. СВОЙСТВА ФУНКЦИИ y = ctg x И ЕЕ ГРАФИК
Объяснение и обоснование
Так как =, то областью определения котангенса будут все значения аргумента, при которых sin х ≠ 0, то есть x ≠ πk, k ∈ Z. Такимобразом,
D (ctg x): x ≠ πk, k ∈ Z.
Тот же результат можно получить, используя геометрическую иллюстрацию. Значение котангенса — это абсцисса соответствующей точки на линии
котангенсов (рис. 95).
Поскольку точки А и В единичной окружности лежат на прямых ОА
и ОВ, параллельных линии котангенсов, мы не можем найти значение котангенса для x = πk, k ∈ Z. Длядругихзначенийаргументамыможемнайтисоответствующуюточкуна линии котангенсов и ее абсциссу — котангенс. Поэтому все значения x ≠ πk входят в область определения функции у = ctg х.
Для точек единичной окружности (которые не совпадают с точками А и В) абсциссы соответствующих точек на линии котангенсов принимают все значения от –× до +×, поскольку для любого действительного числа мы можем указать соответствующую точку на оси абсцисс, а значит, и соответствующую точку Qх на оси котангенсов. Учитывая, что точка О лежит внутри окружности, а точка Qх — вне ее (или на самой окружности), получаем, что прямая ОQх имеет с окружностью хотя бы одну общую точку (на самом деле их две). Следовательно, для любого действительного числа найдется аргумент х, такой, что сtg x равен данному действительному числу. Таким образом, область значений функции y = ctg x — все действительные числа, то есть R.
Это можно записать так: E (ctgx) = R.Из приведенных рассуждений также вытекает, что наибольшего и наименьшего значений функция ctgxне имеет.
Как было показано в § 13, котангенс — нечетная функция: ctg (-x) = -ctgx, поэтому ее график симметричен относительно начала координат.
Там же было обосновано, что котангенс — периодическая функция с наименьшим положительным периодом T= : ctg (x+ ) = ctg x, поэтому через промежутки длиной п вид графика функции ctgxповторяется.
Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси Oyзначение x= 0. Но ctg0 не существует, значит, график функции y= ctg x не пересекает ось Oy.
На оси Оx значение y= 0. Поэтому необходимо найти такие значения x, при которых ctgx, то есть абсцисса соответствующей точки линии котангенсов, равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки C или D(рис. 95), то есть при
Промежутки знакопостоянства. Как было обосновано в § 13, значения функции котангенс положительны (то есть абсцисса соответствующей точки линии котангенсов положительна) в I и III четвертях (рис. 96). Тогда ctgx> 0 при всех . Учитывая период, получаем, что ctgx> 0 при всех
Значения функции котангенс отрицательны (то есть абсцисса соответствующей точки линии котангенсов отрицательна) во II и IV четвертях, таким образом, ctgx< 0 при .
Промежутки возрастания и убывания
Учитывая периодичность функции ctg x (наименьший положительный период T = ), достаточно исследовать ее на возрастание и убывание на любом промежутке длиной , например на промежутке (0; ). Если (0; ) (рис. 97), то при увеличении аргумента x (x2>x1) абсцисса соответствующей точки линии котангенсов уменьшается (то есть ctgx2<ctgx1), следовательно, на этом промежутке функция ctg x убывает. Учитывая периодичность функции y= ctgx, делаем вывод, что она также убывает на каждом из промежутков
Проведенное исследование позволяет построить график функции y= ctg x аналогично тому, как был построен график функции y= tg x. Но график функции у = ctg x можно получить также с помощью геометрических преобразований графика функции у = tg х. По формуле, приведенной на с. 172, , то есть Поэтому график функции у = ctg x можно получить из графика функции у = tg х параллельным переносом вдоль оси Ох на (− ) и симметричным отображением полученного графика относительно оси Ох. Получаем график, который называется котангенсоидой (рис. 98).