Сколько будет бесконечность умножить на бесконечность
Перейти к содержимому

Сколько будет бесконечность умножить на бесконечность

  • автор:

Сколько будет бесконечность умножить на бесконечность?

Сколько будет бесконечность умножить на бесконечность.

Бесконечность конечно же.

Бесконечность умножить на бесконечность равно бесконечность.

Сколько будет бесконечность умножить на бесконечность?

Сколько будет бесконечность умножить на бесконечность?

Сколько будет бесконечность разделить на бесконечность?

Сколько будет бесконечность разделить на бесконечность?

Укажите наименьшее целое число, принадлежащее данному числовому промежутку : [ — 3 ; + бесконечность) , (2 4 / 11 ; + бесконечность) , ( — 8 ; + бесконечность) , [ — 5 2 / 19 ; + бесконечность)?

Укажите наименьшее целое число, принадлежащее данному числовому промежутку : [ — 3 ; + бесконечность) , (2 4 / 11 ; + бесконечность) , ( — 8 ; + бесконечность) , [ — 5 2 / 19 ; + бесконечность).

Сколько цифр в бесконечности?

Сколько цифр в бесконечности.

Изобразите на координатной прямой промежутки ?

Изобразите на координатной прямой промежутки .

[ — 9 ; + бесконечность ] ( — бесконечность ; 5) ( — 5 ; + бесконечность ) Помогите пожалуйста решить.

Используя координатную прямую, найдите пересечение промежутков 🙁 — 7 ; 5)), ( — 4 + бесконечность) и (( — 1 ; 9)( — бесконечность ; — 6)), [ — 6 ; + бесконечность) и ( — 6 ; 1)( — 8 ; 7), ( — 5 ; 10)?

Используя координатную прямую, найдите пересечение промежутков :

( — 7 ; 5)), ( — 4 + бесконечность) и (( — 1 ; 9)

( — бесконечность ; — 6)), [ — 6 ; + бесконечность) и ( — 6 ; 1)

( — 8 ; 7), ( — 5 ; 10) и [ — 3 ; 2]

[ — бесконечность ; 5], ( — 4 ; + бесконечность) и[ — 2 ; 9].

Укажите решение неравенства 2x — 4≤7x — 11) (1 ; + бесконечность) 2) ( — 0, 6 ; + бесконечность) 3) ( — бесконечность ; 1) 4) ( — бесконечность ; — 0, 6)?

Укажите решение неравенства 2x — 4≤7x — 1

1) (1 ; + бесконечность) 2) ( — 0, 6 ; + бесконечность) 3) ( — бесконечность ; 1) 4) ( — бесконечность ; — 0, 6).

Сколько нулей у бесконечностиСколько сколько нулей в бесконечности?

Сколько нулей у бесконечностиСколько сколько нулей в бесконечности.

Х> — 4что в скобочках?

что в скобочках?

От минус бесконечности до — 4 или от — 4 до бесконечности?

1. Сколько существует плоскостей, проходящих через данные прямую и точку в пространстве?

1. Сколько существует плоскостей, проходящих через данные прямую и точку в пространстве?

(А) 0 (Б) 1 (В) бесконечно много (Г) 0 или бесконечно много (Д) 1 или бесконечно много.

На этой странице находится ответ на вопрос Сколько будет бесконечность умножить на бесконечность?, из категории Математика, соответствующий программе для 5 — 9 классов. Чтобы посмотреть другие ответы воспользуйтесь «умным поиском»: с помощью ключевых слов подберите похожие вопросы и ответы в категории Математика. Ответ, полностью соответствующий критериям вашего поиска, можно найти с помощью простого интерфейса: нажмите кнопку вверху страницы и сформулируйте вопрос иначе. Обратите внимание на варианты ответов других пользователей, которые можно не только просмотреть, но и прокомментировать.

Сколько будет бесконечность умножить на бесконечность?

Если умножить бесконечность на бесконечность, сколько получится?

Бесконечное количество бесконечностей повторенное бесконечное количество раз.Вариант ответа.

Или так .Минус конец умножить на минус конец минусы сокращаются получается конец.Что означает эта формула поглощение или взрыв ?Кажется,я сделала какое-то научное открытие.

Вот тут можете не сомневаться, решая задачу по высшей математике, математическому анализу, или даже в другом разделе математики, пишу, как выглядит это математически:

То есть ответ на вопрос: бесконечность — (∞).

Совсем другое дело при решении задачи: 0 * (∞ (1), и (∞) — (∞) (2), и если при решении задачи по теории функций получается значение по типу (1) или (2), нужно применять такие преобразования, которые приведут к более понятному для анализа выражению. Для этого существуют множество теорем преобразования.

Сколько будет бесконечность умножить на бесконечность

Сколько будет если бесконечность умножить на число?

Прсто если число разделить на бесконечность, то будет 0. мне кажется что если умножить тоже будет 0.

мне даже стыдно читать этот вопрос. я уже не говорю об авторе. кошмар, куда мир катится.

Сергей Куликов

Виталий Пученков

Надо полагать, что бесконечность.

Бесконечность, умноженная на число.
А вот если на ноль бесконечность поделить, то сколько будет?

Валерия Корзенникова

Антон

Если число не 0, то бесконечность.
Если 0, то неопределенность, требующая дальнейшего исследования

Baсилий

. у бесконечности нет начала и конца, чтобы что-то с ней делать, она вечного идеала совершенство.

bigstonedragon

Ну, вот скажите, как так получается, что как только у меня возникает ощущение, что пора высказаться на какую-нибудь тему, так сразу и во френд-ленте возникает несколько постов, в которых затрагиваются те же самые вопросы?
Сейчас вот после публикации рассуждений насчет «свободы и необходимости» (http://bigstonedragon.livejournal.com/399734.html) возникла потребность высказаться по неким математическим вопросам; и тут же вижу во френд-ленте: http://vorona-n.livejournal.com/66460.html и http://kosilova.livejournal.com/595991.html?thread=11645207#t11645207 !
А высказаться мне захотелось по вопросам о бесконечности.
Дело в том, что большинство труднопостижимых загадок и «парадоксов» и в науке, и в философии связаны ИМХО именно с бесконечностью. Пока мы остаемся в рамках конечных, замкнутых систем – все просто, наглядно, понятно, но зато и пессимистично: «тепловая смерть», предсказуемость и предопределенность, механистичность и алгебраичность. Пока мы остаемся в рамках замкнутых систем, нет места «звездному небу» или «уроку гармонии», «свободе воли» и «обширному полю сознания».
Возможно, именно в способности аппелировать к бесконечности и заключается основное достижение человеческого разума?
А бесконечность полна парадоксов. Именно они, пожалуй, больше всего запомнились мне из всего курса математики в школе и универе.

sin_gular в обсуждении поста http://kosilova.livejournal.com/595991.html пишет: …И вот что я подумал — все таки вся человеческая математика основана на понятии натурального числа. На дискретности и анизотропности. Видимо так интуитивно работает мозг. Базовым математическим объектом для нас оказалось натуральное число.
Но ведь даже натуральный ряд (1, 2, 3, …) – это уже простейшая из возможных бесконечностей.
И она уже дает нам множество парадоксов.

1. Бесконечность + бесконечность = та же самая бесконечность.
Ну, вот первый из парадоксов. Возьмем не натуральные числа, а целые: то есть добавим к натуральному ряду ещё «0» и отрицательные числа. Казалось бы, общее количество чисел должно было увеличиться вдвое; но на самом деле, их осталось столько же! Потому как целые числа можно перенумеровать так же, как натуральные. Вот:
1 – 0
2 – 1
3 – -1
4 – 2
5 – -2
6 – 3
и т.д. То есть взяв любое целое число, мы однозначно сможем сопоставить ему натуральное, и наоборот. Целых чисел – столько же, сколько и натуральных!
И сколько ни прибавляй к бесконечности бесконечность, все равно в результате будет ТА ЖЕ САМАЯ бесконечность! Ну, не хочет она увеличиваться, и всё тут!

2. «Бесконечность» умножить на «бесконечность» = та же самая «бесконечность»!
Но этого мало. Возьмем теперь не целые числа, а рациональные – то есть всевозможные дроби, полученные путем деления одного целого числа на другое.
Казалось бы, их должно быть в бесконечное число раз больше, чем количество целых чисел. Ну, возьмем, к примеру, такое сопоставление:
1 – 1;
2 – ½;
3 – 1/3;
4 – ¼;
5 – 1/5;
и т.д.
Казалось бы, мы взяли лишь малую толику рациональных чисел – только между 0 и 1 и только такие, где в числителе стоит «1»; а их уже оказалось столько же, сколько всех целых чисел, вместе взятых! Значит, в общей сложности, рациональных чисел должно быть в бесконечное число раз больше, чем целых!
А вот получается, что на самом деле это вовсе не так. Потому что рациональные числа на самом деле тоже можно перенумеровать, точно так же, как и целые!
Вот, смотрите. Давайте выстроим такую вот «числовую пирамиду»:
1 – 0;
2 – 1/1 (=1);
3 – ½ ; 2/1 (=2);
4 – 1/3 ; 3/1 (=3);
5 – ¼ ; 2/3 ; 3/2 ; 4/1 (=4);
и т.д.
Т.е. на каждом «этаже» пирамиды располагаются те дроби, в которых сумма числителя и знаменателя равна номеру «этажа» пирамиды!
Не буду приводить доказательств, но таким образом можно перенумеровать все рациональные числа – то есть даже перемножив «бесконечность» на саму себя, да ещё не один раз, мы в итоге получили ТУ ЖЕ САМУЮ бесконечность!

3. Дуализм «дискретного» и «непрерывного»
Как говорится, «чем дальше в лес, тем больше дров».
Парадоксы я стараюсь расположить в порядке нарастания степени их парадоксальности. И вот сейчас мы как раз подходим к тому из парадоксов, который меня в своё время поразил, пожалуй, больше всего.
Интуитивно понятно, что есть две принципиально разные вещи – процессы «дискретные» и «непрерывные». Грубо говоря, набор точек и линия.
Формально, если взять для наглядности геометрическое представление, то дискретное множество – это такое, где вокруг любого элемента можно, грубо говоря, провести окружность, внутри которой ни одного другого элемента этого множества не найдётся. То есть, есть некое минимально возможное «расстояние» между элементами множества, ближе которого они друг к другу не приближаются. Дискретный набор точек в микроскоп всегда при некотором увеличении будет выглядеть именно как набор точек, а не непрерывная линия.
Наоборот, в непрерывном (точнее, насколько я помню, «всюду плотном») множестве, сколь малое расстояние не возьми, всегда найдётся элемент, который ближе к выбранной точке, чем данное расстояние. Грубо говоря, какое увеличение в микроскопе не возьми, такое множество всё равно будет оставаться «линией», и не превратится в «набор точек».
Для чисел самым наглядным геометрическим представлением является ось координат. На этой оси целые числа будут являться отдельными точками, а рациональные – как раз таки всей осью, непрерывной (точнее, «всюду плотной») линией, которую, со сколь угодно большим увеличением ни рассматривай, она всё равно линией и останется, и никогда не «рассыплется» в набор отдельных точек.
И вот, получается, что на самом деле, количество «точек», составляющих дискретное множество и «непрерывную» линию – одинаково.
Помню, этот «дуализм» дискретного и непрерывного в своё время поразил меня больше всего из всего того странного и не укладывающегося в рамки «здравого смысла». Что связано с «бесконечностью».

4. Бесконечность больше бесконечности.
Но даже и на этом парадоксы всё-таки не заканчиваются.
Казалось бы, всё, дальше ехать некуда, больше найденной нами «бесконечности» ничего уже быть не может.
А вот оказывается, вовсе и не так!
Потому как «рациональные» числа – это вовсе даже не все числа, какие есть в природе.
И, как оказывается, даже не большая их часть.
Потому как кроме «рациональных чисел», каждое из которых можно представить в виде дроби, в числителе и знаменателе которой – целые числа, существуют ещё числа «иррациональные», в виде простых дробей не представимые. Любое рациональное число можно записать в виде периодической десятичной дроби; иррациональные числа – это бесконечные непериодические десятичные дроби. Наиболее известным представителем таких чисел является число «пи» — отношение длины окружности к её диаметру.
Так вот, я не помню уже доказательств (прошу поверить мне на слово), но иррациональные числа перенумеровать принципиально невозможно – их количество оказывается БОЛЬШЕ, чем количество целых чисел! Математически первая из рассмотренных мною бесконечностей (набор целых чисел) принято именовать счетной, вторую (иррациональные числа) — несчетной.
Насколько я помню, для сравнения «бесконечностей» между собой используется понятие «мощности»; и насколько я помню, этих самых «мощностей» опять таки может быть бесконечное количество ��

5. Линия, которая бесконечно длиннее самой себя.
Ну, и самое интересное, что геометрически и рациональные, и иррациональные числа можно представить как одну и ту же линию – ось координат; и то, и другое множество является «всюду плотным», и на графике будет выглядеть как одна и та же линия! Сколько ни увеличивай разрешающую способность «микроскопа», различий между линией, состоящей из рациональных чисел, и линией, состоящей из иррациональных чисел, увидеть не удастся: при любом «увеличении» это будет одна и та же непрерывная («всюду плотная») линия!
И тем не менее, «рациональная линия» бесконечно «короче» «иррациональной»!

Сколько будет бесконечность умножить на бесконечность

Сколько будет бесконечность умножить на бесконечность?

Если умножить бесконечность на бесконечность, сколько получится?

Бесконечное количество бесконечностей повторенное бесконечное количество раз.Вариант ответа.

Или так .Минус конец умножить на минус конец минусы сокращаются получается конец.Что означает эта формула поглощение или взрыв ?Кажется,я сделала какое-то научное открытие.

Вот тут можете не сомневаться, решая задачу по высшей математике, математическому анализу, или даже в другом разделе математики, пишу, как выглядит это математически:

То есть ответ на вопрос: бесконечность — (∞).

Совсем другое дело при решении задачи: 0 * (∞ (1), и (∞) — (∞) (2), и если при решении задачи по теории функций получается значение по типу (1) или (2), нужно применять такие преобразования, которые приведут к более понятному для анализа выражению. Для этого существуют множество теорем преобразования.

bigstonedragon

Ну, вот скажите, как так получается, что как только у меня возникает ощущение, что пора высказаться на какую-нибудь тему, так сразу и во френд-ленте возникает несколько постов, в которых затрагиваются те же самые вопросы?
Сейчас вот после публикации рассуждений насчет «свободы и необходимости» (http://bigstonedragon.livejournal.com/399734.html) возникла потребность высказаться по неким математическим вопросам; и тут же вижу во френд-ленте: http://vorona-n.livejournal.com/66460.html и http://kosilova.livejournal.com/595991.html?thread=11645207#t11645207 !
А высказаться мне захотелось по вопросам о бесконечности.
Дело в том, что большинство труднопостижимых загадок и «парадоксов» и в науке, и в философии связаны ИМХО именно с бесконечностью. Пока мы остаемся в рамках конечных, замкнутых систем – все просто, наглядно, понятно, но зато и пессимистично: «тепловая смерть», предсказуемость и предопределенность, механистичность и алгебраичность. Пока мы остаемся в рамках замкнутых систем, нет места «звездному небу» или «уроку гармонии», «свободе воли» и «обширному полю сознания».
Возможно, именно в способности аппелировать к бесконечности и заключается основное достижение человеческого разума?
А бесконечность полна парадоксов. Именно они, пожалуй, больше всего запомнились мне из всего курса математики в школе и универе.

sin_gular в обсуждении поста http://kosilova.livejournal.com/595991.html пишет: …И вот что я подумал — все таки вся человеческая математика основана на понятии натурального числа. На дискретности и анизотропности. Видимо так интуитивно работает мозг. Базовым математическим объектом для нас оказалось натуральное число.
Но ведь даже натуральный ряд (1, 2, 3, …) – это уже простейшая из возможных бесконечностей.
И она уже дает нам множество парадоксов.

1. Бесконечность + бесконечность = та же самая бесконечность.
Ну, вот первый из парадоксов. Возьмем не натуральные числа, а целые: то есть добавим к натуральному ряду ещё «0» и отрицательные числа. Казалось бы, общее количество чисел должно было увеличиться вдвое; но на самом деле, их осталось столько же! Потому как целые числа можно перенумеровать так же, как натуральные. Вот:
1 – 0
2 – 1
3 – -1
4 – 2
5 – -2
6 – 3
и т.д. То есть взяв любое целое число, мы однозначно сможем сопоставить ему натуральное, и наоборот. Целых чисел – столько же, сколько и натуральных!
И сколько ни прибавляй к бесконечности бесконечность, все равно в результате будет ТА ЖЕ САМАЯ бесконечность! Ну, не хочет она увеличиваться, и всё тут!

2. «Бесконечность» умножить на «бесконечность» = та же самая «бесконечность»!
Но этого мало. Возьмем теперь не целые числа, а рациональные – то есть всевозможные дроби, полученные путем деления одного целого числа на другое.
Казалось бы, их должно быть в бесконечное число раз больше, чем количество целых чисел. Ну, возьмем, к примеру, такое сопоставление:
1 – 1;
2 – ½;
3 – 1/3;
4 – ¼;
5 – 1/5;
и т.д.
Казалось бы, мы взяли лишь малую толику рациональных чисел – только между 0 и 1 и только такие, где в числителе стоит «1»; а их уже оказалось столько же, сколько всех целых чисел, вместе взятых! Значит, в общей сложности, рациональных чисел должно быть в бесконечное число раз больше, чем целых!
А вот получается, что на самом деле это вовсе не так. Потому что рациональные числа на самом деле тоже можно перенумеровать, точно так же, как и целые!
Вот, смотрите. Давайте выстроим такую вот «числовую пирамиду»:
1 – 0;
2 – 1/1 (=1);
3 – ½ ; 2/1 (=2);
4 – 1/3 ; 3/1 (=3);
5 – ¼ ; 2/3 ; 3/2 ; 4/1 (=4);
и т.д.
Т.е. на каждом «этаже» пирамиды располагаются те дроби, в которых сумма числителя и знаменателя равна номеру «этажа» пирамиды!
Не буду приводить доказательств, но таким образом можно перенумеровать все рациональные числа – то есть даже перемножив «бесконечность» на саму себя, да ещё не один раз, мы в итоге получили ТУ ЖЕ САМУЮ бесконечность!

3. Дуализм «дискретного» и «непрерывного»
Как говорится, «чем дальше в лес, тем больше дров».
Парадоксы я стараюсь расположить в порядке нарастания степени их парадоксальности. И вот сейчас мы как раз подходим к тому из парадоксов, который меня в своё время поразил, пожалуй, больше всего.
Интуитивно понятно, что есть две принципиально разные вещи – процессы «дискретные» и «непрерывные». Грубо говоря, набор точек и линия.
Формально, если взять для наглядности геометрическое представление, то дискретное множество – это такое, где вокруг любого элемента можно, грубо говоря, провести окружность, внутри которой ни одного другого элемента этого множества не найдётся. То есть, есть некое минимально возможное «расстояние» между элементами множества, ближе которого они друг к другу не приближаются. Дискретный набор точек в микроскоп всегда при некотором увеличении будет выглядеть именно как набор точек, а не непрерывная линия.
Наоборот, в непрерывном (точнее, насколько я помню, «всюду плотном») множестве, сколь малое расстояние не возьми, всегда найдётся элемент, который ближе к выбранной точке, чем данное расстояние. Грубо говоря, какое увеличение в микроскопе не возьми, такое множество всё равно будет оставаться «линией», и не превратится в «набор точек».
Для чисел самым наглядным геометрическим представлением является ось координат. На этой оси целые числа будут являться отдельными точками, а рациональные – как раз таки всей осью, непрерывной (точнее, «всюду плотной») линией, которую, со сколь угодно большим увеличением ни рассматривай, она всё равно линией и останется, и никогда не «рассыплется» в набор отдельных точек.
И вот, получается, что на самом деле, количество «точек», составляющих дискретное множество и «непрерывную» линию – одинаково.
Помню, этот «дуализм» дискретного и непрерывного в своё время поразил меня больше всего из всего того странного и не укладывающегося в рамки «здравого смысла». Что связано с «бесконечностью».

4. Бесконечность больше бесконечности.
Но даже и на этом парадоксы всё-таки не заканчиваются.
Казалось бы, всё, дальше ехать некуда, больше найденной нами «бесконечности» ничего уже быть не может.
А вот оказывается, вовсе и не так!
Потому как «рациональные» числа – это вовсе даже не все числа, какие есть в природе.
И, как оказывается, даже не большая их часть.
Потому как кроме «рациональных чисел», каждое из которых можно представить в виде дроби, в числителе и знаменателе которой – целые числа, существуют ещё числа «иррациональные», в виде простых дробей не представимые. Любое рациональное число можно записать в виде периодической десятичной дроби; иррациональные числа – это бесконечные непериодические десятичные дроби. Наиболее известным представителем таких чисел является число «пи» — отношение длины окружности к её диаметру.
Так вот, я не помню уже доказательств (прошу поверить мне на слово), но иррациональные числа перенумеровать принципиально невозможно – их количество оказывается БОЛЬШЕ, чем количество целых чисел! Математически первая из рассмотренных мною бесконечностей (набор целых чисел) принято именовать счетной, вторую (иррациональные числа) — несчетной.
Насколько я помню, для сравнения «бесконечностей» между собой используется понятие «мощности»; и насколько я помню, этих самых «мощностей» опять таки может быть бесконечное количество ��

5. Линия, которая бесконечно длиннее самой себя.
Ну, и самое интересное, что геометрически и рациональные, и иррациональные числа можно представить как одну и ту же линию – ось координат; и то, и другое множество является «всюду плотным», и на графике будет выглядеть как одна и та же линия! Сколько ни увеличивай разрешающую способность «микроскопа», различий между линией, состоящей из рациональных чисел, и линией, состоящей из иррациональных чисел, увидеть не удастся: при любом «увеличении» это будет одна и та же непрерывная («всюду плотная») линия!
И тем не менее, «рациональная линия» бесконечно «короче» «иррациональной»!

5 фактов о бесконечности

5 фактов о бесконечности

Все люди знают это число и используют для описания чего-то непостижимо огромного. Однако бесконечность — не такое простое понятие, как кажется на первый взгляд.

1. Согласно правилам бесконечности, существует бесконечное число как чётных, так и нечётных чисел. Тем не менее, нечетных чисел будет ровно половина от общего количества чисел.

2. Бесконечность плюс единица равняется бесконечность, если отнять единицу — получаем бесконечность, сложив две бесконечности получим бесконечность, бесконечность, поделённая на два, равняется бесконечности, если вычесть бесконечность из бесконечности, то результат не вполне ясен, а вот бесконечность, поделённая на бесконечность, скорее всего, равняется единице.

3. Учёные определили, что в известной нам части Вселенной существует 1080 субатомных частиц — это та часть, которую исследовали. Многие учёные уверены, что Вселенная бесконечная, а учёные, которые скептически относятся к бесконечности Вселенной, в данном вопросе всё-таки допускают такую вероятность.

4. Если Вселенная бесконечна, то с математической точки зрения получается, что где-то находится точная копия нашей планеты, поскольку существует вероятность, что атомы «двойника» занимают такое же положение, как и на нашей планете. Шансы, что такой вариант существует, ничтожно малы, но в бесконечной Вселенной это не только возможно, но и обязательно должно произойти, и, по меньшей мере, бесконечное число раз, при условии, что Вселенная все-таки бесконечно бесконечна.

5. Однако не все уверены, что Вселенная бесконечна. Израильский математик, профессор Дорон Зельбергер, убеждён, что числа не могут увеличиваться бесконечно, и существует такое огромное число, что если прибавить к нему единицу, получится ноль. Тем не менее, это число и его значение лежат далеко за пределами человеческого понимания, и вероятно, это число никогда не будет найдено и доказано. Это убеждение является главным принципом математической философии, известной как «Ультрабесконечность».

Основные неопределенности пределов и их раскрытие

В предыдущей статье мы рассказывали, как правильно вычислять пределы элементарных функций. Если же мы возьмем более сложные функции, то у нас в расчетах появятся выражения с неопределенным значением. Они и называются неопределенностями.

Выделяют следующие основные виды неопределенностей:

  1. Деление 0 на 0 0 0 ;
  2. Деление одной бесконечности на другую ∞ ∞ ;

0 , возведенный в нулевую степень 0 0 ;

Мы перечислили все основные неопределенности. Другие выражения в различных условиях могут принимать конечные или бесконечные значения, следовательно, они не могут считаться неопределенностями.

Раскрытие неопределенностей

Раскрыть неопределенность можно:

    С помощью упрощения вида функции (использование формул сокращенного умножения, тригонометрических формул, дополнительное умножение на сопряженные выражения и последующее сокращение и др. );

С помощью замечательных пределов;

С помощью правила Лопиталя;

Заменив одно бесконечно малое выражение на эквивалентное ему выражение (как правило, это действие выполняется с помощью таблицы бесконечно малых выражений).

Всю информацию, представленную выше, можно наглядно представить в виде таблицы. С левой стороны в ней приводится вид неопределенности, с правой – подходящий метод ее раскрытия (нахождения предела). Этой таблицей очень удобно пользоваться при расчетах, связанных с нахождением пределов.

Неопределенность Метод раскрытия неопределенности
1. Деление 0 на 0 Преобразование и последующее упрощение выражения. Если выражение имеет вид sin ( k x ) k x или k x sin ( k x ) то нужно использовать первый замечательный предел. Если такое решение не подходит, пользуемся правилом Лопиталя или таблицей эквивалентных бесконечно малых выражений
2. Деление бесконечности на бесконечность Преобразование и упрощение выражения либо использование правила Лопиталя
3. Умножение нуля на бесконечность или нахождение разности между двумя бесконечностями Преобразование в 0 0 или ∞ ∞ с последующим применением правила Лопиталя
4. Единица в степени бесконечности Использование второго замечательного предела
5. Возведение нуля или бесконечности в нулевую степень Логарифмирование выражения с применением равенства lim x → x 0 ln ( f ( x ) ) = ln lim x → x 0 f ( x )

Разберем пару задач. Эти примеры довольно простые: в них ответ получается сразу после подстановки значений и неопределенности при этом не возникает.

Вычислите предел lim x → 1 x 3 + 3 x — 1 x 5 + 3 .

Решение

Выполняем подстановку значений и получаем ответ.

lim x → 1 x 3 + 3 x — 1 x 5 + 3 = 1 3 + 3 · 1 — 1 1 5 + 3 = 3 4 = 3 2

Ответ: lim x → 1 x 3 + 3 x — 1 x 5 + 3 = 3 2 .

Вычислите предел lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 .

Решение

У нас есть показательно степенная функция, в основание которой нужно подставить x = 0 .

( x 2 + 2 , 5 ) x = 0 = 0 2 + 2 , 5 = 2 , 5

Значит, мы можем преобразовать предел в следующее выражение:

lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 = lim x → 0 2 , 5 1 x 2

Теперь разберемся с показателем – степенной функцией 1 x 2 = x — 2 . Заглянем в таблицу пределов для степенных функций с показателем меньше нуля и получим следующее: lim x → 0 + 0 1 x 2 = lim x → 0 + 0 x — 2 = + ∞ и lim x → 0 + 0 1 x 2 = lim x → 0 + 0 x — 2 = + ∞

Таким образом, можно записать, что lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 = lim x → 0 2 , 5 1 x 2 = 2 , 5 + ∞ .

Теперь берем таблицу пределов показательных функций с основаниями, большими 0 , и получаем:

lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 = lim x → 0 2 , 5 1 x 2 = 2 , 5 + ∞ = + ∞

Ответ: lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 = + ∞ .

Далее мы приведем примеры решений задач на раскрытие неопределенностей с использованием метода преобразования. На практике выполнять это приходится довольно часто.

Вычислите предел lim x → 1 x 2 — 1 x — 1 .

Решение

Выполняем подстановку значений.

lim x → 1 x 2 — 1 x — 1 = 1 2 — 1 1 — 1 = 0 0

В итоге у нас получилась неопределенность. Используем таблицу выше, чтобы выбрать метод решения. Там указано, что нужно выполнить упрощение выражения.

lim x → 1 x 2 — 1 x — 1 = 0 0 = lim x → 1 ( x — 1 ) · ( x + 1 ) x — 1 = = lim x → 1 ( x — 1 ) · ( x + 1 ) · ( x + 1 ) x — 1 = lim x → 1 ( x + 1 ) · x — 1 = = 1 + 1 · 1 — 1 = 2 · 0 = 0

Как мы видим, упрощение привело к раскрытию неопределенности.

Ответ: lim x → 1 x 2 — 1 x — 1 = 0

Вычислите предел lim x → 3 x — 3 12 — x — 6 + x .

Решение

Подставляем значение и получаем запись следующего вида.

lim x → 3 x — 3 12 — x — 6 + x = 3 — 3 12 — 3 — 6 + 3 = 0 9 — 9 = 0 0

Мы пришли к необходимости делить нуль на нуль, что является неопределенностью. Посмотрим нужный метод решения в таблице – это упрощение и преобразование выражения. Выполним дополнительное умножение числителя и знаменателя на сопряженное знаменателю выражение 12 — x + 6 + x :

lim x → 3 x — 3 12 — x — 6 + x = 0 0 = lim x → 3 x — 3 12 — x + 6 + x 12 — x — 6 + x 12 — x + 6 + x

Домножение знаменателя выполняется для того, чтобы потом можно было воспользоваться формулой сокращенного умножения (разность квадратов) и выполнить сокращение.

lim x → 3 x — 3 12 — x + 6 + x 12 — x — 6 + x 12 — x + 6 + x = lim x → 3 x — 3 12 — x + 6 + x 12 — x 2 — 6 + x 2 = lim x → 3 ( x — 3 ) 12 — x + 6 + x 12 — x — ( 6 + x ) = = lim x → 3 ( x — 3 ) 12 — x + 6 + x 6 — 2 x = lim x → 3 ( x — 3 ) 12 — x + 6 + x — 2 ( x — 3 ) = = lim x → 3 12 — x + 6 + x — 2 = 12 — 3 + 6 + 3 — 2 = 9 + 9 — 2 = — 9 = — 3

Как мы видим, в результате этих действий нам удалось избавиться от неопределенности.

Ответ: lim x → 3 x — 3 12 — x — 6 + x = — 3 .

Важно отметить, что при решении подобных задач подход с использованием домножения используется очень часто, так что советуем запомнить, как именно это делается.

Вычислите предел lim x → 1 x 2 + 2 x — 3 3 x 2 — 5 x + 2 .

Решение

lim x → 1 x 2 + 2 x — 3 3 x 2 — 5 x + 2 = 1 2 + 2 · 1 — 3 3 · 1 2 — 5 · 1 + 2 = 0 0

В итоге у нас вышла неопределенность. Рекомендуемый способ решения задачи в таком случае – упрощение выражения. Поскольку при значении x , равном единице, числитель и знаменатель обращаются в 0 , то мы можем разложить их на множители и потом сократить на х — 1 ,и тогда неопределенность исчезнет.

Выполняем разложение числителя на множители:

x 2 + 2 x — 3 = 0 D = 2 2 — 4 · 1 · ( — 3 ) = 16 ⇒ x 1 = — 2 — 16 2 = — 3 x 2 = — 2 + 16 2 = 1 ⇒ x 2 + 2 x — 3 = x + 3 x — 1

Теперь делаем то же самое со знаменателем:

3 x 2 — 5 x + 2 = 0 D = — 5 2 — 4 · 3 · 2 = 1 ⇒ x 1 = 5 — 1 2 · 3 = 2 3 x 2 = 5 + 1 2 · 3 = 1 ⇒ 3 x 2 — 5 x + 3 = 3 x — 2 3 x — 1

Мы получили предел следующего вида:

lim x → 1 x 2 + 2 x — 3 3 x 2 — 5 x + 2 = 0 0 = lim x → 1 x + 3 · x — 1 3 · x — 2 3 · x — 1 = = lim x → 1 x + 3 3 · x — 2 3 = 1 + 3 3 · 1 — 2 3 = 4

Как мы видим, в ходе преобразования нам удалось избавиться от неопределенности.

Ответ: lim x → 1 x 2 + 2 x — 3 3 x 2 — 5 x + 2 = 4 .

Далее нам нужно рассмотреть случаи пределов на бесконечности от степенных выражений. Если показатели этих выражений будут больше 0 , то предел на бесконечности также окажется бесконечным. При этом основное значение имеет самая большая степень, а остальные можно не учитывать.

Например, lim x → ∞ ( x 4 + 2 x 3 — 6 ) = lim x → ∞ x 4 = ∞ или lim x → ∞ x 4 + 4 x 3 + 21 x 2 — 11 5 = lim x → ∞ x 4 5 = ∞ .

Если под знаком предела у нас стоит дробь со степенными выражениями в числителе и знаменателе, то при x → ∞ у нас возникает неопределенность вида ∞ ∞ . Чтобы избавиться от этой неопределенности, нам нужно разделить числитель и знаменатель дроби на x m a x ( m , n ) . Приведем пример решения подобной задачи.

Вычислите предел lim x → ∞ x 7 + 2 x 5 — 4 3 x 7 + 12 .

Решение

lim x → ∞ x 7 + 2 x 5 — 4 3 x 7 + 12 = ∞ ∞

Степени числителя и знаменателя равны 7 . Делим их на x 7 и получаем:

lim x → ∞ x 7 + 2 x 5 — 4 3 x 7 + 12 = lim x → ∞ x 7 + 2 x 5 — 4 x 7 3 x 7 + 12 x 7 = = lim x → ∞ 1 + 2 x 2 — 4 x 7 3 + 12 x 7 = 1 + 2 ∞ 2 — 4 ∞ 7 3 + 12 ∞ 7 = 1 + 0 — 0 3 + 0 = 1 3

Ответ: lim x → ∞ x 7 + 2 x 5 — 4 3 x 7 + 12 = 1 3 .

Вычислите предел lim x → ∞ x 8 + 11 3 x 2 + x + 1 .

Решение

lim x → ∞ x 8 + 11 3 x 2 + x + 1 = ∞ ∞

Числитель имеет степень 8 3 , а знаменатель 2 . Выполним деление числителя и знаменателя на x 8 3 :

lim x → ∞ x 8 + 11 3 x 2 + x + 1 = ∞ ∞ = lim x → ∞ x 8 + 11 3 x 8 3 x 2 + x + 1 x 8 3 = = lim x → ∞ 1 + 11 x 8 3 1 x 2 3 + 1 x 5 3 + 1 x 8 3 = 1 + 11 ∞ 3 1 ∞ + 1 ∞ + 1 ∞ = 1 + 0 3 0 + 0 + 0 = 1 0 = ∞

Ответ: lim x → ∞ x 8 + 11 3 x 2 + x + 1 = ∞ .

Вычислите предел lim x → ∞ x 3 + 2 x 2 — 1 x 10 + 56 x 7 + 12 3 .

Решение

lim x → ∞ x 3 + 2 x 2 — 1 x 10 + 56 x 7 + 12 3 = ∞ ∞

У нас есть числитель в степени 3 и знаменатель в степени 10 3 . Значит, нам нужно разделить числитель и знаменатель на x 10 3 :

lim x → ∞ x 3 + 2 x 2 — 1 x 10 + 56 x 7 + 12 3 = ∞ ∞ = lim x → ∞ x 3 + 2 x 2 — 1 x 10 3 x 10 + 56 x 7 + 12 3 x 10 3 = = lim x → ∞ 1 x 1 3 + 2 x 4 3 — 1 x 10 3 1 + 56 x 3 + 12 x 10 3 = 1 ∞ + 2 ∞ — 1 ∞ 1 + 56 ∞ + 12 ∞ 3 = 0 + 0 — 0 1 + 0 + 0 3 = 0

Ответ: lim x → ∞ x 3 + 2 x 2 — 1 x 10 + 56 x 7 + 12 3 = 0 .

Выводы

В случае с пределом отношений возможны три основных варианта:

Если степень числителя равна степени знаменателя, то предел будет равен отношению коэффициентов при старших степенях.

Если степень числителя будет больше степени знаменателя, то предел будет равен бесконечности.

Если степень числителя меньше степени знаменателя, то предел будет равен нулю.

Другие методы раскрытия неопределенностей мы разберем в отдельных статьях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *