Как найти угол между прямыми по координатам
Перейти к содержимому

Как найти угол между прямыми по координатам

  • автор:

Угол между двумя прямыми

Буду кратким. Угол между двумя прямыми равен углу между их направляющими векторами. Таким образом, если вам удастся найти координаты направляющих векторов a = (x1; y1; z1) и b = (x2; y2; z2), то сможете найти угол. Точнее, косинус угла по формуле:

Формула скалярного произведения

Посмотрим, как эта формула работает на конкретных примерах:

Задача. В кубе ABCDA1B1C1D1 отмечены точки E и F — середины ребер A1B1 и B1C1 соответственно. Найдите угол между прямыми AE и BF.

Куб

Поскольку ребро куба не указано, положим AB = 1. Введем стандартную систему координат: начало в точке A, оси x, y, z направим вдоль AB, AD и AA1 соответственно. Единичный отрезок равен AB = 1. Теперь найдем координаты направляющих векторов для наших прямых.

Найдем координаты вектора AE. Для этого нам потребуются точки A = (0; 0; 0) и E = (0,5; 0; 1). Поскольку точка E — середина отрезка A1B1, ее координаты равны среднему арифметическому координат концов. Заметим, что начало вектора AE совпадает с началом координат, поэтому AE = (0,5; 0; 1).

Теперь разберемся с вектором BF. Аналогично, разбираем точки B = (1; 0; 0) и F = (1; 0,5; 1), т.к. F — середина отрезка B1C1. Имеем:
BF = (1 − 1; 0,5 − 0; 1 − 0) = (0; 0,5; 1).

Итак, направляющие векторы готовы. Косинус угла между прямыми — это косинус угла между направляющими векторами, поэтому имеем:

Косинус угла между векторами

Задача. В правильной трехгранной призме ABCA1B1C1, все ребра которой равны 1, отмечены точки D и E — середины ребер A1B1 и B1C1 соответственно. Найдите угол между прямыми AD и BE.

Трехгранная призма

Введем стандартную систему координат: начало координат в точке A, ось x направим вдоль AB, z — вдоль AA1. Ось y направим так, чтобы плоскость OXY совпадала с плоскостью ABC. Единичный отрезок равен AB = 1. Найдем координаты направляющих векторов для искомых прямых.

Для начала найдем координаты вектора AD. Рассмотрим точки: A = (0; 0; 0) и D = (0,5; 0; 1), т.к. D — середина отрезка A1B1. Поскольку начало вектора AD совпадает с началом координат, получаем AD = (0,5; 0; 1).

Теперь найдем координаты вектора BE. Точка B = (1; 0; 0) считается легко. С точкой E — серединой отрезка C1B1 — чуть сложнее. Имеем:

Координаты точки E и вектора BE

Осталось найти косинус угла:

Косинус второго угла между векторами

Задача. В правильной шестигранной призме ABCDEFA1B1C1D1E1F1, все ребра которой равны 1, отмечены точки K и L — середины ребер A1B1 и B1C1 соответственно. Найдите угол между прямыми AK и BL.

Шестигранная призма

Введем стандартную для призмы систему координат: начало координат поместим в центр нижнего основания, ось x направим вдоль FC, ось y — через середины отрезков AB и DE, а ось z — вертикально вверх. Единичный отрезок снова равен AB = 1. Выпишем координаты интересующих нас точек:

Координаты точек A, B, K и L

Точки K и L — середины отрезков A1B1 и B1C1 соответственно, поэтому их координаты находятся через среднее арифметическое. Зная точки, найдем координаты направляющих векторов AK и BL:

Координаты векторов AK и BL

Теперь найдем косинус угла:

Косинус третьего угла между векторами

Задача. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, отмечены точки E и F — середины сторон SB и SC соответственно. Найдите угол между прямыми AE и BF.

Четырехугольная пирамида

Введем стандартную систему координат: начало в точке A, оси x и y направим вдоль AB и AD соответственно, а ось z направим вертикально вверх. Единичный отрезок равен AB = 1.

Точки E и F — середины отрезков SB и SC соответственно, поэтому их координаты находятся как среднее арифметическое концов. Выпишем координаты интересующих нас точек:
A = (0; 0; 0); B = (1; 0; 0)

Координаты точек E и F

Зная точки, найдем координаты направляющих векторов AE и BF:

Координаты векторов AE и BF

Координаты вектора AE совпадают с координатами точки E, поскольку точка A — начало координат. Осталось найти косинус угла:

Косинус четвертого угла между векторами

  1. Задача 14: Угол между плоскостями сечения

Угол между двумя прямыми на плоскости

Угол между прямыми, заданными общими уравнениями

Пусть две прямые и заданы общими уравнениями

Так как нормальным вектором прямой является вектор , а нормальным вектором прямой является вектор , то задача об определении угла между прямыми и сводится к определению угла между векторами и .

Из определения скалярного произведения и из выражения в координатах длин векторов и и их скалярного произведения получим

Итак, угол между прямыми, заданными общими уравнениями, определяется с помощью формулы (1).

Пример 1. Найти угол между прямыми, заданными общими уравнениями и .

Решение. Используя формулу (1), получаем:

Угол между прямыми, заданными каноническими уравнениями

Так как направляющими векторами прямых и служат векторы и , то в полной аналогии со случаем, разобранным в предыдущем параграфе, мы получим следующую формулу для определения угла между прямыми:

Итак, угол между прямыми, заданными каноническими уравнениями, определяется с помощью формулы (2).

Пример 2. Найти угол между прямыми, заданными каноническими уравнениями и .

Решение. По формуле (2) находим:

Угол между прямыми, заданными уравненями с угловым коэффициентом

Пусть две прямые и заданы уравнениями с угловым коэффициентом

Если и — углы наклона прямых и к оси Ox, то из элементарных соображений следует, что

Получаем следующую формулу для определения угла между прямыми:

Пример 3. Найти угол между прямыми, заданными уравнениями с угловым коэффициентом и .

2.5.7. Как найти угол между прямыми?

Новая картинка за очередным поворотом:
В геометрии за угол между двумя прямыми принимается МЕНЬШИЙ угол, из чего автоматически следует, что он не может быть тупым. На рисунке угол, обозначенный красной дугой, не считается углом между пересекающимися прямыми. А считается таковым его «зелёный» сосед или отрицательно ориентированный «малиновый» угол . Если прямые перпендикулярны, то за угол между ними можно принять любой из 4 углов.
…что-то не понятно? Срочно изучаем Приложение Тригонометрия!

Однако ещё раз: чем отличаются углы ? Ориентацией (направлением «прокрутки» угла). Напоминаю, что отрицательно ориентированный угол «прокручивается» по часовой стрелке и записывается со знаком «минус». Следует отметить, что ориентацию угла часто не принимают во внимание, и рассматривают «просто угол», который .

Как найти угол между двумя прямыми? Существуют три основные формулы.

Способ первый. Рассмотрим две прямые, заданные общими уравнениями в декартовой системе координат:

Если , то прямые перпендикулярны ( либо ).

Если , то прямые не перпендикулярны и ориентированный угол между ними можно вычислить с помощью формулы:

Задача 83

Найти угол между прямыми , заданными в декартовой системе координат.

Исходя из вышесказанного, решение удобно оформить в два шага:

1) Вычислим произведение:
, значит, прямые не перпендикулярны.

2) Угол между прямыми найдём с помощью формулы:

И с помощью обратной функции (см. Приложение Тригонометрия) легко найти сам угол, при этом используем нечётность арктангенса:

Ответ:

В ответе указываем точное значение, а также приближённое значение (желательно и в градусах, и в радианах), вычисленное с помощью калькулятора.
Ну, минус, так минус, ничего страшного, вот геометрическая иллюстрация:

Неудивительно, что угол получился отрицательной ориентации, ведь в условии задачи «первым номером» идёт прямая и «открутка» угла началась именно с неё. Если очень хочется получить положительное значение, то нужно поменять прямые местами, то есть коэффициенты взять из второго уравнения , а коэффициенты – из первого уравнения . Короче говоря, начать нужно
с прямой .

Скрывать не буду, сам подбираю прямые в том порядке, чтобы угол получился положительным. Так красивее, но не более того.

Способ второй, он удобен, когда прямые заданы уравнениями с угловым коэффициентом: (в декартовых координатах).

Если , то прямые перпендикулярны ( либо ).

Если , то ориентированный угол между ними можно найти с помощью формулы:
, и на самом деле это частный случай предыдущей формулы.

К слову, из равенства следует полезная взаимосвязь угловых коэффициентов перпендикулярных прямых: , которая используется в некоторых задачах.

Решим Задачу 83 вторым способом, для этого перепишем прямые в нужном виде:

Таким образом, угловые коэффициенты: , и алгоритм похож:

1) Проверим, будут ли прямые перпендикулярны:
, значит, прямые не перпендикулярны.

2) Используем формулу:

Ответ:

И третий способ состоит нахождении угла между направляющими векторами прямых с помощью скалярного произведения: , но здесь не принимается во внимание ориентация угла (по любому получится ). Кроме того, он может оказаться тупым, и тогда придётся делать оговорку, что угол между прямыми – это меньший угол, и из радиан (не из !) вычитать получившийся арккосинус.

Какой способ выбрать? Ориентируйтесь на вашу задачу, методичку или ситуацию.

Угол между пересекающимися прямыми: определение, примеры нахождения

Данный материал посвящен такому понятию, как угол между двумя пересекающимися прямыми. В первом пункте мы поясним, что он из себя представляет, и покажем его на иллюстрациях. Потом разберем, какими способами можно найти синус, косинус этого угла и сам угол (отдельно рассмотрим случаи с плоскостью и трехмерным пространством), приведем нужные формулы и покажем на примерах, как именно они применяются на практике.

Что такое угол между пересекающимися прямыми

Для того чтобы понять, что такое угол, образующийся при пересечении двух прямых, нам потребуется вспомнить само определение угла, перпендикулярности и точки пересечения.

Мы называем две прямые пересекающимися, если у них есть одна общая точка. Эта точка называется точкой пересечения двух прямых.

Каждая прямая разделяется точкой пересечения на лучи. Обе прямые при этом образуют 4 угла, из которых два – вертикальные, а два – смежные. Если мы знаем меру одного из них, то можем определить и другие оставшиеся.

Допустим, нам известно, что один из углов равен α . В таком случае угол, который является вертикальным по отношению к нему, тоже будет равен α . Чтобы найти оставшиеся углы, нам надо вычислить разность 180 ° — α . Если α будет равно 90 градусам, то все углы будут прямыми. Пересекающиеся под прямым углом линии называются перпендикулярными (понятию перпендикулярности посвящена отдельная статья).

Взгляните на рисунок:

Что такое угол между пересекающимися прямыми

Перейдем к формулированию основного определения.

Угол, образованный двумя пересекающимися прямыми – это мера меньшего из 4 -х углов, которые образуют две эти прямые.

Из определения нужно сделать важный вывод: размер угла в этом случае будет выражен любым действительным числом в интервале ( 0 , 90 ] . Если прямые являются перпендикулярными, то угол между ними в любом случае будет равен 90 градусам.

Что такое угол между пересекающимися прямыми

Как найти угол между пересекающимися прямыми на плоскости

Умение находить меру угла между двумя пересекающимися прямыми полезно для решения многих практических задач. Метод решения можно выбрать из нескольких вариантов.

Для начала мы можем взять геометрические методы. Если нам известно что-то о дополнительных углах, то можно связать их с нужным нам углом, используя свойства равных или подобных фигур. Например, если мы знаем стороны треугольника и нужно вычислить угол между прямыми, на которых эти стороны расположены, то для решения нам подойдет теорема косинусов. Если у нас в условии есть прямоугольный треугольник, то для подсчетов нам также пригодится знание синуса, косинуса и тангенса угла.

Координатный метод тоже весьма удобен для решения задач такого типа. Поясним, как правильно его использовать.

У нас есть прямоугольная (декартова) система координат O x y , в которой заданы две прямые. Обозначим их буквами a и b . Прямые при этом можно описать с помощью каких-либо уравнений. Исходные прямые имеют точку пересечения M . Как определить искомый угол (обозначим его α ) между этими прямыми?

Начнем с формулировки основного принципа нахождения угла в заданных условиях.

Нам известно, что с понятием прямой линии тесно связаны такие понятия, как направляющий и нормальный вектор. Если у нас есть уравнение некоторой прямой, из него можно взять координаты этих векторов. Мы можем сделать это сразу для двух пересекающихся прямых.

Угол, образуемый двумя пересекающимися прямыми, можно найти с помощью:

  • угла между направляющими векторами;
  • ­угла между нормальными векторами;
  • угла между нормальным вектором одной прямой и направляющим вектором другой.

Теперь рассмотрим каждый способ отдельно.

1. Допустим, что у нас есть прямая a с направляющим вектором a → = ( a x , a y ) и прямая b с направляющим вектором b → ( b x , b y ) . Теперь отложим два вектора a → и b → от точки пересечения. После этого мы увидим, что они будут располагаться каждый на своей прямой. Тогда у нас есть четыре варианта их взаимного расположения. См. иллюстрацию:

Как найти угол между пересекающимися прямыми на плоскости

Если угол между двумя векторами не является тупым, то он и будет нужным нам углом между пересекающимися прямыми a и b . Если же он тупой, то искомый угол будет равен углу, смежному с углом a → , b → ^ . Таким образом, α = a → , b → ^ в том случае, если a → , b → ^ ≤ 90 ° , и α = 180 ° — a → , b → ^ , если a → , b → ^ > 90 ° .

Исходя из того, что косинусы равных углов равны, мы можем переписать получившиеся равенства так: cos α = cos a → , b → ^ , если a → , b → ^ ≤ 90 ° ; cos α = cos 180 ° — a → , b → ^ = — cos a → , b → ^ , если a → , b → ^ > 90 ° .

Во втором случае были использованы формулы приведения. Таким образом,

cos α cos a → , b → ^ , cos a → , b → ^ ≥ 0 — cos a → , b → ^ , cos a → , b → ^ < 0 ⇔ cos α = cos a → , b → ^

Запишем последнюю формулу словами:

Косинус угла, образованного двумя пересекающимися прямыми, будет равен модулю косинуса угла между его направляющими векторами.

Общий вид формулы косинуса угла между двумя векторами a → = ( a x , a y ) и b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a → , b → ^ a → · b → = a x · b x + a y· b y a x 2 + a y 2 · b x 2 + b y 2

Из нее мы можем вывести формулу косинуса угла между двумя заданными прямыми:

cos α = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2 = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

Тогда сам угол можно найти по следующей формуле:

α = a r c cos a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2

Здесь a → = ( a x , a y ) и b → = ( b x , b y ) – это направляющие векторы заданных прямых.

Приведем пример решения задачи.

В прямоугольной системе координат на плоскости заданы две пересекающиеся прямые a и b . Их можно описать параметрическими уравнениями x = 1 + 4 · λ y = 2 + λ λ ∈ R и x 5 = y — 6 — 3 . Вычислите угол между этими прямыми.

Решение

У нас в условии есть параметрическое уравнение, значит, для этой прямой мы сразу можем записать координаты ее направляющего вектора. Для этого нам нужно взять значения коэффициентов при параметре, т.е. прямая x = 1 + 4 · λ y = 2 + λ λ ∈ R будет иметь направляющий вектор a → = ( 4 , 1 ) .

Вторая прямая описана с помощью канонического уравнения x 5 = y — 6 — 3 . Здесь координаты мы можем взять из знаменателей. Таким образом, у этой прямой есть направляющий вектор b → = ( 5 , — 3 ) .

Далее переходим непосредственно к нахождению угла. Для этого просто подставляем имеющиеся координаты двух векторов в приведенную выше формулу α = a r c cos a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2 . Получаем следующее:

α = a r c cos 4 · 5 + 1 · ( — 3 ) 4 2 + 1 2 · 5 2 + ( — 3 ) 2 = a r c cos 17 17 · 34 = a r c cos 1 2 = 45 °

Ответ: данные прямые образуют угол в 45 градусов.

Мы можем решить подобную задачу с помощью нахождения угла между нормальными векторами. Если у нас есть прямая a с нормальным вектором n a → = ( n a x , n a y ) и прямая b с нормальным вектором n b → = ( n b x , n b y ) , то угол между ними будет равен углу между n a → и n b → либо углу, который будет смежным с n a → , n b → ^ . Этот способ показан на картинке:

Как найти угол между пересекающимися прямыми на плоскости

Формулы для вычисления косинуса угла между пересекающимися прямыми и самого этого угла с помощью координат нормальных векторов выглядят так:

cos α = cos n a → , n b → ^ = n a x · n b x + n a y + n b y n a x 2 + n a y 2 · n b x 2 + n b y 2 α = a r c cos n a x · n b x + n a y + n b y n a x 2 + n a y 2 · n b x 2 + n b y 2

Здесь n a → и n b → обозначают нормальные векторы двух заданных прямых.

В прямоугольной системе координат заданы две прямые с помощью уравнений 3 x + 5 y — 30 = 0 и x + 4 y — 17 = 0 . Найдите синус, косинус угла между ними и величину самого этого угла.

Решение

Исходные прямые заданы с помощью нормальных уравнений прямой вида A x + B y + C = 0 . Нормальный вектор обозначим n → = ( A , B ) . Найдем координаты первого нормального вектора для одной прямой и запишем их: n a → = ( 3 , 5 ) . Для второй прямой x + 4 y — 17 = 0 нормальный вектор будет иметь координаты n b → = ( 1 , 4 ) . Теперь добавим полученные значения в формулу и подсчитаем итог:

cos α = cos n a → , n b → ^ = 3 · 1 + 5 · 4 3 2 + 5 2 · 1 2 + 4 2 = 23 34 · 17 = 23 2 34

Если нам известен косинус угла, то мы можем вычислить его синус, используя основное тригонометрическое тождество. Поскольку угол α , образованный прямыми, не является тупым, то sin α = 1 — cos 2 α = 1 — 23 2 34 2 = 7 2 34 .

В таком случае α = a r c cos 23 2 34 = a r c sin 7 2 34 .

Ответ: cos α = 23 2 34 , sin α = 7 2 34 , α = a r c cos 23 2 34 = a r c sin 7 2 34

Разберем последний случай – нахождение угла между прямыми, если нам известны координаты направляющего вектора одной прямой и нормального вектора другой.

Допустим, что прямая a имеет направляющий вектор a → = ( a x , a y ) , а прямая b – нормальный вектор n b → = ( n b x , n b y ) . Нам надо отложить эти векторы от точки пересечения и рассмотреть все варианты их взаимного расположения. См. на картинке:

Как найти угол между пересекающимися прямыми на плоскости

Если величина угла между заданными векторами не более 90 градусов, получается, что он будет дополнять угол между a и b до прямого угла.

a → , n b → ^ = 90 ° — α в том случае, если a → , n b → ^ ≤ 90 ° .

Если он менее 90 градусов, то мы получим следующее:

a → , n b → ^ > 90 ° , тогда a → , n b → ^ = 90 ° + α

Используя правило равенства косинусов равных углов, запишем:

cos a → , n b → ^ = cos ( 90 ° — α ) = sin α при a → , n b → ^ ≤ 90 ° .

cos a → , n b → ^ = cos 90 ° + α = — sin α при a → , n b → ^ > 90 ° .

sin α = cos a → , n b → ^ , a → , n b → ^ ≤ 90 ° — cos a → , n b → ^ , a → , n b → ^ > 90 ° ⇔ sin α = cos a → , n b → ^ , a → , n b → ^ > 0 — cos a → , n b → ^ , a → , n b → ^ < 0 ⇔ ⇔ sin α = cos a → , n b → ^

Чтобы найти синус угла между двумя прямыми, пересекающимися на плоскости, нужно вычислить модуль косинуса угла между направляющим вектором первой прямой и нормальным вектором второй.

Запишем необходимые формулы. Нахождение синуса угла:

sin α = cos a → , n b → ^ = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2

Нахождение самого угла:

α = a r c sin = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2

Здесь a → является направляющим вектором первой прямой, а n b → – нормальным вектором второй.

Две пересекающиеся прямые заданы уравнениями x — 5 = y — 6 3 и x + 4 y — 17 = 0 . Найдите угол пересечения.

Решение

Берем координаты направляющего и нормального вектора из заданных уравнений. Получается a → = ( — 5 , 3 ) и n → b = ( 1 , 4 ) . Берем формулу α = a r c sin = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2 и считаем:

α = a r c sin = — 5 · 1 + 3 · 4 ( — 5 ) 2 + 3 2 · 1 2 + 4 2 = a r c sin 7 2 34

Обратите внимание, что мы взяли уравнения из предыдущей задачи и получили точно такой же результат, но другим способом.

Ответ: α = a r c sin 7 2 34

Приведем еще один способ нахождения нужного угла с помощью угловых коэффициентов заданных прямых.

У нас есть прямая a , которая задана в прямоугольной системе координат с помощью уравнения y = k 1 · x + b 1 , и прямая b , заданная как y = k 2 · x + b 2 . Это уравнения прямых с угловым коэффициентом. Чтобы найти угол пересечения, используем формулу:

α = a r c cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1 , где k 1 и k 2 являются угловыми коэффициентами заданных прямых. Для получения этой записи были использованы формулы определения угла через координаты нормальных векторов.

Есть две пересекающиеся на плоскости прямые, заданные уравнениями y = — 3 5 x + 6 и y = — 1 4 x + 17 4 . Вычислите величину угла пересечения.

Решение

Угловые коэффициенты наших прямых равны k 1 = — 3 5 и k 2 = — 1 4 . Добавим их в формулу α = a r c cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1 и подсчитаем:

α = a r c cos — 3 5 · — 1 4 + 1 — 3 5 2 + 1 · — 1 4 2 + 1 = a r c cos 23 20 34 24 · 17 16 = a r c cos 23 2 34

Ответ: α = a r c cos 23 2 34

В выводах этого пункта следует отметить, что приведенные здесь формулы нахождения угла не обязательно учить наизусть. Для этого достаточно знать координаты направляющих и/или нормальных векторов заданных прямых и уметь определять их по разным типам уравнений. А вот формулы для вычисления косинуса угла лучше запомнить или записать.

Как вычислить угол между пересекающимися прямыми в пространстве

Вычисление такого угла можно свести к вычислению координат направляющих векторов и определению величины угла, образованного этими векторами. Для таких примеров используются такие же рассуждения, которые мы приводили до этого.

Допустим, что у нас есть прямоугольная система координат, расположенная в трехмерном пространстве. В ней заданы две прямые a и b с точкой пересечения M . Чтобы вычислить координаты направляющих векторов, нам нужно знать уравнения этих прямых. Обозначим направляющие векторы a → = ( a x , a y , a z ) и b → = ( b x , b y , b z ) . Для вычисления косинуса угла между ними воспользуемся формулой:

cos α = cos a → , b → ^ = a → , b → a → · b → = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Для нахождения самого угла нам понадобится эта формула:

α = a r c cos a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

У нас есть прямая, заданная в трехмерном пространстве с помощью уравнения x 1 = y — 3 = z + 3 — 2 . Известно, что она пересекается с осью O z . Вычислите угол пересечения и косинус этого угла.

Решение

Обозначим угол, который надо вычислить, буквой α . Запишем координаты направляющего вектора для первой прямой – a → = ( 1 , — 3 , — 2 ) . Для оси аппликат мы можем взять координатный вектор k → = ( 0 , 0 , 1 ) в качестве направляющего. Мы получили необходимые данные и можем добавить их в нужную формулу:

cos α = cos a → , k → ^ = a → , k → a → · k → = 1 · 0 — 3 · 0 — 2 · 1 1 2 + ( — 3 ) 2 + ( — 2 ) 2 · 0 2 + 0 2 + 1 2 = 2 8 = 1 2

В итоге мы получили, что нужный нам угол будет равен a r c cos 1 2 = 45 ° .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *