Направление обхода контура как определить
Перейти к содержимому

Направление обхода контура как определить

  • автор:

Второй закон Кирхгофа

Все электрические сети подключаются к источнику питания, иначе это не цепь, а набор деталей. Это может быть батарейка, аккумулятор или понижающая трансформаторная подстанция.

Эти элементы сети вместе с электропроводкой и электроприборами составляют контур, распределение потенциалов в котором описывается второй закон Кирхгофа.

Определение второго правила Кирхгофа

Этот закон определяет напряжение и ЭДС (E) на различных элементах цепи и применяется к замкнутой сети или контуру. Поэтому он также известен как закон петли Кирхгофа.

Второе правило так же носит название закон напряжения Кирхгофа. Оно выводится из закона сохранения энергии, что можно понять из следующего явления.

В замкнутом контуре количество полученного заряда равно количеству потерянной энергии, которая происходит из-за падения напряжения на резисторах, включенных в эту цепь. Следовательно, сумма подъёмов и падений потенциалов в замкнутой цепи должна быть равна нулю. Математически это можно представить как ΣU=0.

Формулировка №1 : алгебраическая сумма падений напряжений в любом замкнутом контуре, равна алгебраической сумме ЭДС вдоль того же контура.

формула для второго закона Кирхгофа_formuly kirghofa

Формулировка №2 : алгебраическая сумма напряжений (не падений напряжения!) вдоль любого замкнутого контура равна нулю.

формула для второго правила Кирхгофа_formuly kirghofa

Иначе говоря, внутри любого замкнутой сети сумма напряжений на всех элементах, поставляющих в сеть электрическую энергию, таких как батареи, генераторы или трансформаторы, должна равняться сумме напряжений на всех деталях, потребляющих электроэнергию.

Это является следствием двух законов — сохранения заряда и сохранения энергии. При этом второе правило Кирхгофа гласит, что электродвижущая сила или ЭДС, действующая на элементы замкнутого контура, должна быть равна сумме разностей потенциалов, имеющихся на всех составляющих этого контура.

второй закон Кирхгофа определение_vtoroj zakon kirkhgofa opredelenie

При этом нужно принимать во внимание не только падение напряжения на пассивных элементах, но и внутреннее сопротивление источника питания.

Важно! При наличии в цепи ёмкостного или индуктивного сопротивления следует учитывать не только активное, но и реактивное или полное падение напряжения.

Физический смысл второго закона Кирхгофа

2 закон Кирхгофа позволяет выразить в числовой форме связь между ЭДС и падением напряжения на элементах замкнутой сети. Эти величины должны быть одинаковыми, иначе нарушается один из фундаментальных законов о сохранении энергии, сформулированный ещё Михаилом Ломоносовым и другими учёными:

  • если бы ΣE > ΣU, то какая-то часть энергии источника питания исчезала бы бесследно;
  • если бы ΣE < ΣU, то стало бы возможным создание «вечного» двигателя и получать энергию из «ниоткуда».

Оба этих явления ни разу не наблюдались экспериментально и, следовательно, являются невозможными.

как работает 2-й закон Кирхгофа_kak rabotaet 2 zakon kirhgofa

Расчёты, использующие законы Кирхгофа, применяются при определении параметров электрических цепей. Есть два закона Кирхгофа: первый или закон тока и второй или закон напряжения. С их помощью составляются уравнения для отдельных компонентов (резисторов, конденсаторов и катушек индуктивности).

Применяя правила Кирхгофа, можно получить уравнения, позволяющие находить неизвестные данные. Это токи, ЭДС, напряжение и сопротивления для определения создается система уравнений, которых должно быть столько же, сколько имеется неизвестных. При этом уравнения могут иметь два решения, определяющие знаки различных величин.

Применяя первое правило Кирхгофа необходимо пометить ток в каждой ветви и решить, в каком направлении он течет. При этом отсутствует опасность выбора неправильного направления потому что, если оно было выбрано неверно, ток будет правильной величины, но c отрицательным значением, что не повлияет на конечный результат.

Применяя второе правило Кирхгофа, правило петли, нужно найти замкнутую цепь (контур) и решить, в каком направлении производить её обход, по часовой стрелке или против. При этом обход цепи в противоположном направлении меняет знак каждого члена в уравнении, что соответствует умножению обеих частей уравнения на -1.

Применение законов Кирхгофа имеют ограничения. В некоторых ситуациях составит правильные уравнения сложно, а иногда невозможно. Правила Кирхгофа предназначены для сетей постоянного тока, поэтому при увеличении частоты растут неучтённые потери из-за ёмкостного и индуктивного сопротивления проводов.

Уравнение для второго закона Кирхгофа

Формула второго закона Кирхгофа может выражаться двумя способами — ΣE=ΣIR и ΣU=0. Более удобной для использования считается первое выражение. При расчёте используется алгебраическое сложение с использованием не только величины, но знака потенциала.

При этом на принципиальной схеме произвольным образом выбирается направление прохождения замкнутой цепи и так же случайно определяется направление электрического тока. Возле всех элементов отмечаются знаки для ЭДС и падений напряжения по следующим правилам:

  • при совпадении направлений обхода контура и источника питания, ЭДС присваивают знак «+», в противном случае элемент имеет знак «-«;
  • при одинаковом направлении тока и обхода контура, произведение (IR) имеет знак «+», иначе ему присваивается знак «-«.

обход контура_obhod kontura

В результате обхода сумма потенциалов, меняя знак и величину, должна вернуться к нулевому значению. Если это не произошло, значит, была допущена ошибка при подсчёте или не был учён какой-либо либо фактор, например, ёмкость проводов или внутреннее сопротивление элементов питания.

Несмотря та то, что направление электрического тока может выбираться любым, рекомендуется его принимать от «+» к «-» в цепи постоянного тока и от «L» к «N» в сети переменного тока.

Важно! Контур может быть не самостоятельным элементом, а частью схемы бОльших размеров. В этом случае источником напряжения является не батарея, а узлы подающие питание.

У закона напряжения Кирхгофа есть несколько практических выводов, каждый из которых может использоваться в соответствующей ситуации:

  • В сложной схеме можно выделить несколько контуров, каждый из которых рассчитывается по-отдельности. Алгебраические суммы ЭДС и напряжений в таком контуре равны ΣE=ΣU.
  • Если в контуре нет источников питания, то ток в цепи отсутствует. В такой системе из-за отсутствия падения напряжения на резисторах ΣU=0.

Расчеты электрической цепи

Для примера рассмотрим схему с двумя источниками питания, включёнными параллельно. При этом одна ЭДС напряжением Е1=10 В, вторая Е2=20 В. Сопротивление нагрузки R1=10 Ом, R2=20 Ом, R3=40 Ом.

второй закон Кирхгофа_vtoroj zakon kirhgofa

Прежде всего, необходимо выделить отдельные контуры и выбрать направление обхода контура и протекания тока. При этом, используя первый закон Кирхгофа, в нагрузке: I1+I2=I3.

1-й закон Кирхгофа

Применяя второй закон Кирхгофа и приведенное выше правило о знаках, в первого контура получается следующее выражение: I1•R1+I3•R3 = E1, 10I1+40I3 = 10, или I1+4I3 = 1.

формула Кирхгофа-1_formuly kirghofa1

Для второго контура расчёт получится: I2•R2+I3•R3 = E2, 20I2+40I3 = 20, или 2I3+I2 = 1.

формула Кирхгофа-2_formuly kirghofa2

Для третьего контура: I1•R1-I2•R2 = E1-E2, 10I1-20I2 = 10-20, или -I1+2I2= 1.

формула Кирхгофа-3_formuly kirghofa3

Используя формулу I1+I2=I3 из первого закона Кирхгофа, подставляем выражение (0*) в выражение (1*): I1 +4(I1+I2) = 1, или 5I1+4I2 = 1.

формула Кирхгофа-4_formuly kirghofa4

Затем подставляем в выражение (2*) в выражение (0*). Уравнение для второго контура преобразовывается в выражение: 2(I1+I2)+I2 = 1, или 2I1+3I2 = 1

формула Кирхгофа-5_formuly kirghofa5

Теперь ток I1 можно найти из (выражения 5* подставляем в 4*): 2I1+3I2 = 5I1+4I2, или I1 = -(1/3)I2

формула Кирхгофа-6_formuly kirghofa6
Используя последнее уравнение и уравнение для третьего контура получаем ток I2:

формула Кирхгофа-7_formuly kirghofa7

Находим ток I1: I1 = -(1/3)•0,429 = -0,143 А.

Ток I3: I3 = I1+I2 = 0,429-0,143 = 0,286 А.

  • I2=0,429 А;
  • I1=–0,143 А;
  • I3=0,286 А;

Друзья еще один пример решения уравнений по 1-му и 2-му законам Кирхгофа:

второе правило Кирхгофа_vtoroe pravilo kirhgofa

Вывод

Второй закон Кирхгофа гласит, что алгебраическая сумма падений напряжений в любом замкнутом контуре равна алгебраической сумме ЭДС, действующих вдоль этого контура.

Это означает, что энергия, подаваемая батареей, расходуется всеми остальными компонентами цепи, поскольку энергия не может войти или выйти из замкнутого контура. Правило представляет собой применение закона сохранения энергии с точки зрения разности электрических потенциалов.

Другими словами — энергия сохраняется. Общее количество вложенной энергии (сумма ЭДС) равно общему количеству отведенной энергии (сумма падений напряжений). Этот закон используется для анализа сложных электросхем, которые нельзя рассчитать более простыми методами.

Первый и второй законы Кирхгофа

Некоторые электрические цепи можно изобразить в виде простого контура, содержащего источник питания и небольшое количество деталей — резисторов, конденсаторов или других. Но существуют и большие схемы, включающие в себя несколько замкнутых ветвей. В этих случаях важно точно рассчитать электрические параметры на любом рассматриваемом участке. Законы Кирхгофа позволяют их определить путём составления и решения нескольких простых уравнений.

Выдающийся физик Густав Кирхгоф

Первый закон Кирхгофа

Закон Ома описывает взаимосвязь между напряжением, сопротивлением и силой тока в простых одноконтурных цепях. На практике чаще встречаются сложные разветвленные цепи, состоящие из нескольких контуров и многих узлов, которые невозможно описать, применяя стандартные правила для расчета последовательных и параллельных цепей.

Пример цепи с несколькими замкнутыми контурами

Определить напряжение и силу тока в разветвленных цепях позволяют правила Кирхгофа, которые в технической литературе обычно называют законами Кирхгофа. Хотя более корректным следует считать название «правила», поскольку они не являются фундаментальными законами природы. Например, первое правило Кирхгофа вытекает из закона сохранения заряда. Оно гласит, что сумма всех токов в каждом узле электроцепи равна нулю.

Первое правило Кирхгофа

Формулировка закона требует уточнения следующих терминов:

  • Узел — это определённое место на схеме, в котором сходится 3 или большее количество проводов. Узлами можно назвать точки, расположенные на протяжении 1 провода, если в этих местах подсоединены ещё провода.
  • Движение тока, направленного к определённому узлу, условно называют положительным, противоположное — отрицательным.

Пример узла и уравнений для определения тока в нем

Закон Кирхгофа, если говорить простыми словами, может быть сформулирован так: сколько токов втекает в узел, столько же и вытекает. Это свидетельствует о непрерывности тока для электрической цепи. Поэтому существует ещё одна формула, выражающая первое правило Кирхгофа:

Эквивалентная формулировка 1 правила

Здесь с одной стороны знака равенства рассматриваются токи, входящие в определённый узел, а с другой — выходящие.

При использовании первого закона Кирхгофа для цепи переменного тока применяются мгновенные значения напряжений, которые принято обозначать буквой İ. Расчеты в этом случае проводятся по уравнению, представленному в комплексной форме.

Комплексная форма уравнения

Второй закон Кирхгофа

Когда рассматривается электрическая цепь, подключённая к источнику тока, в каждой её точке имеется определённый потенциал. Разность между ними создаёт электрическое поле, которое вызывает перемещение зарядов.

Цепь представляет собой замкнутый контур, по которому движутся электроны. Электрическое поле выполняет определённую работу по их перемещению. Каждый заряд перемещается по цепи, а затем под действием ЭДС источника замыкает круг.

Второй закон Кирхгофа гласит, что работа по перемещению заряда вдоль любого контура электроцепи с возвратом в начальную точку равна нулю. В этой формулировке подразумевается любой замкнутый контур, причем как тот, который включает источник питания, так и о тот, где его нет.

Работа электрического поля при перемещении заряда в рассматриваемом случае представляет собой сумму падений напряжения для каждого из участков контура. Таким образом, второе правило или закон Кирхгофа гласит, что сумма напряжений всех ветвей в контуре равняется нулю. Это можно выразить в виде следующего уравнения:

Формулировка 2 правила

Если напряжение и направление обхода контура совпадают, то U записывают со знаком плюс, в противном случае — со знаком минус. Направление обхода выбранного контура может быть определено произвольным образом. Второе правило Густава Кирхгофа его не регламентирует.

Если в контуре есть один или несколько источников питания, то формулу можно выразить следующим образом:

Эквивалентная формулировка 2 правила

Здесь имеется p источников питания, q участков контура. Сумма всех ЭДС имеющихся источников питания равна сумме падений напряжения.

Значение правил Кирхгофа

Законы Кирхгофа выражают фундаментальные принципы физики. Их формулировки кажутся очень простыми и очевидными. Но на самом деле они представляют собой метод, позволяющий рассчитать электрические параметры сетей очень сложной конфигурации.

С помощью законов Кирхгофа можно составить систему независимых уравнений для расчета параметров электрической цепи. Важно, чтобы их количество было не меньше, чем число параметров, которые необходимо определить.

Пример электроцепи для расчётов

На приведённом рисунке представлена электроцепь, для которой будет проводиться расчёт. Используя первый закон или правило Кирхгофа, для узла A можно записать:

В этот узел входят два тока, а выходит один. Далее необходимо применить второе правило. Для этого можно выбрать внешний контур. Видно, что здесь имеется два источника тока и два резистора. Поэтому будут получены уравнения:

Уравнение для полного контура

Здесь приведены 2 эквивалентные формулы. В левой части равенства учтены электродвижущие силы двух источников тока, в правой — падение напряжения на обоих резисторах с учётом направления токов. Ещё одно уравнение можно получить из 2 закона при обходе по правому внутреннему контуру:

Уравнение для внутреннего контура

В результате получена система, включающая в себя три уравнения с тремя неизвестными:

Система уравнений

Используя конкретные данные, можно подставить в систему уравнений численные значения и найти, чему равна сила тока для каждой ветви, относящейся к узлу A. При расчётах важно понимать, что при достаточно сложной конфигурации электроцепи иногда бывает непросто определить направление силы тока для каждой ветви.

Первый и второй законы Густава Кирхгофа позволяют точно определить не только величину тока, но и его знак. Если в приведённом примере после вычисления искомых значений с помощью представленной системы уравнений окажется, что ток с индексом 2 принимает отрицательное значение, то это означает, что на самом деле он имеет направление, противоположное указанному на рисунке.

Законы для магнитного поля

Правила Кирхгофа нашли свое применение и при расчете магнитных цепей. Первый закон Кирхгофа для магнитной цепи выглядит так:

Первое правило Кирхгофа для магнитной цепи

Проще говоря, сумма всех магнитных потоков, проходящих через узел, равняется нулю.

Второй закон в применении к магнитным полям звучит следующим образом: «Сумма магнитодвижущих сил в контуре равняется сумме магнитных напряжений». Формула выглядит так:

Второе правило для магнитной цепи

Кирхгофом выведены правила, имеющие абсолютный прикладной характер. С их помощью можно решать практические вопросы в электротехнике. Широкое применение этих правил объясняется простотой формулировки уравнений и возможностью их решения с применением стандартных способов линейной алгебры.

Законы Кирхгофа и их применение

Для расчета разветвленной сложной электрической цепи существенное значение имеет число ветвей и узлов.
Ветвью электрической цепи и ее схемы называется участок, состоящий только из последовательно включенных источников ЭДС и приемников с одним и тем же током. Узлом цепи и схемы называется место или точка соединения трех и более ветвей (узлом иногда называют и точку соединения двух ветвей).
При обходе по соединенным в узлах ветвям можно получить замкнутый контур электрической цепи; каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел в рассматриваемом контуре встречается не более одного раза.

На рис. 1.13 в качестве примера показана схема электрической цепи с пятью узлами и девятью ветвями. В частных случаях встречаются ветви только с резистивными элементами без источников ЭДС (ветвь 1 — у) и с сопротивлениями, практически равными нулю (ветвь 2 — р). Так как напряжение между выводами ветви 2 — р равно нулю (сопротивление равно нулю), то потенциалы точек 2 и р одинаковы и оба узла можно объединить в один.
Режим электрической цепи произвольной конфигурации полностью определяется первым и вторым законами Кирхгофа.
Первый закон Кирхгофа применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна пулю:

В этом уравнении одинаковые знаки должны быть взяты для токов, имеющих одинаковые положительные направления относительно узловой точки. В дальнейшем будем в уравнениях, составленных по первому закону Кирхгофа, записывать токи, направленные к узлу, с отрицательными знаками, а направленные от узла, — с положительными.
Если к данному узлу присоединен источник тока, то ток этого источника также должен быть учтен. В дальнейшем будет показано, что в ряде случаев целесообразно писать в одной части равенства (1.19а) алгебраическую сумму токов в ветвях, а в другой части алгебраическую сумму токов, обусловленных источниками токов:

где I — ток одной из ветвей, присоединенной к рассматриваемому узлу, a J — ток одного из источников тока, присоединенного к тому же самому узлу; этот ток входит в (1.196) с положительным знаком, если направлен к узлу, и с отрицательным, если направлен от узла.
Второй закон Кирхгофа применяется к контурам электрической цепи и формулируется следующим образом: в любом контуре алгебраическая сумма напряжений на всех элементах и участках цепи, входящих в этот контур, равна нулю :

при этом положительные направления для напряжений на элементах и участках выбираются произвольно; в уравнении (1.20а) положительные знаки принимаются для тех напряжений, положительные направления которых совпадают с произвольно выбранным направлением обхода контура.

Часто применяется другая формулировка второго закона Кирхгофа: в любом замкнутом контуре алгебраическая сумма напряжений на всех участках с сопротивлениями, входящими в этот контур, равна алгебраической сумме ЭДС :

В этом уравнении положительные знаки принимаются для токов и ЭДС, положительные направления которых совпадают с произвольно выбранным направлением обхода рассматриваемого контура.
В теории электрических цепей решаются задачи двух типов. К первому типу относятся задачи анализа электрических цепей, когда, например, известны конфигурация и элементы цепи, а требуется определить токи, напряжения и мощности тех или иных участков. Ко второму типу относятся обратные задачи, в которых, например, заданы токи и напряжения на некоторых участках, а требуется найти конфигурацию цепи и выбрать ее элементы. Такие задачи называются задачами синтеза электрических цепей. Отметим, что решение задач анализа намного проще решения задач синтеза.
В практической электротехнике довольно часто встречаются задачи анализа. Кроме того, для овладения приемами синтеза цепей необходимо предварительно изучить методы их анализа, которые преимущественно и будут в дальнейшем рассматриваться.
Задачи анализа могут быть решены при помощи законов Кирхгофа. Если известны параметры всех элементов цепи и ее конфигурация, а требуется определить токи, то при составлении уравнений по законам Кирхгофа рекомендуется придерживаться такой последовательности: сначала выбрать произвольные положительные направления токов во всех ветвях электрической цепи, затем составить уравнения для узлов на основании первого закона Кирхгофа и, наконец, составить уравнения для контуров на основании второго закона Кирхгофа.
Пусть электрическая цепь содержит В ветвей и У узлов. Покажем, что на основании первого и второго законов Кирхгофа можно составить соответственно У — 1 и В — У + 1 взаимно независимых уравнений, что в сумме дает необходимое и достаточное число уравнений для определения В токов (во всех ветвях).
На основании первого закона Кирхгофа для У узлов (рис. 1.13) можно написать У уравнений:

Так как любая ветвь связывает между собой только два узла, то ток каждой ветви должен обязательно войти в эти уравнения 2 раза, причем I12 =-I21 ; I13 =-I31 и т.д.
Следовательно, сумма левых частей всех У уравнений дает тождественно нуль. Иначе говоря, одно из У уравнений может быть получено как следствие остальных У — 1 уравнений или число взаимно независимых уравнений, составленных на основании первого закона Кирхгофа, равно У — 1, т. е. на единицу меньше числа узлов. Например, в случае цепи по рис. 1.14,о с четырьмя узлами

Добавим к этим У — 1 = 3 уравнениям уравнение

Суммируя четыре уравнения, получаем тождество 0 = 0; следовательно, из этих четырех уравнений любые три независимые, например первые три (1.21а).
Так как беспредельное накопление электрических зарядов не может происходить как в отдельных узлах электрической цепи, так и в любых ее частях, ограниченных замкнутыми поверхностями, то первый закон Кирхгофа можно применить не только к какому-либо узлу, но и к любой замкнутой поверхности — сечению.

Например, для поверхности S (рис. 1.14,а), как бы рассекающей электрическую схему на две части, справедливо уравнение , что можно также получить из уравнений (1.21) для узлов 3 и 4.
Чтобы установить число взаимно независимых уравнений, вытекающих из второго закона Кирхгофа, напишем для всех В ветвей схемы (рис. 1.13) В уравнений на основании закона Ома (1.11а):

где — сопротивление ветви, соединяющей узлы р и у; Е ру — суммарная ЭДС, действующая в ветви р — у в направлении от р к у; — потенциалы узлов р и у.
В этих уравнениях суммарное число неизвестных токов В ветвей и потенциалов У узлов равняется В + У.
Не изменяя условий задачи, можно принять потенциал одного из узлов равным любому значению, в частности нулю. Если теперь из системы В уравнений (1.22) исключить оставшиеся неизвестными У — 1 потенциалов, то число уравнений уменьшится до В — (У — 1). Но исключение потенциалов из уравнений (1.22) приводит к уравнениям, связывающим ЭДС источников с напряжениями на резистивных элементах, т. е. к уравнениям, составленным на основании второго закона Кирхгофа.
Таким образом, число независимых уравнений, которые можно составить на основании второго закона Кирхгофа, равно В — (У- 1).
В качестве примера напишем уравнения, связывающие потенциалы узлов с токами и ЭДС для схемы рис. 1.14, а по ( 1.126):

Сложив третье и четвертое уравнения и вычтя полученную сумму из первого, получим

Если применим второй закон Кирхгофа (1.206) к контуру 1-4-2-1 (при обходе вдоль контура по направлению движения часовой стрелки), то получим это же уравнение.
Аналогичным путем можно получить уравнения для других контуров:
для контура 1-3-2-1

для котуpa 2-4-3-2

Совместное решение любых пяти уравнений (1.21), (1.23) и (1.24) дает значения токов во всех ветвях электрической цепи, показанной на рис. 1.14, а. Если и результате решения этих уравнений получится отрицательное значение для какого-либо тока, то это значит, что действительное направление противоположно принятому за положительное.
При записи уравнений по второму закону Кирхгофа следует обращать особое внимание на то, чтобы составленные уравнения были взаимно независимыми. Контуры необходимо выбрать гак. чтобы в них вошли все ветви схемы, а в каждый из контуров — возможно меньшее число ветвей. Контуры взаимно независимы, если каждый последующий контур, для которого составляется уравнение, имеет не меньше одной новой ветви и не получается из контуров, для которых уже написаны уравнения, путем удаления из этих контуров общих ветвей. Например, контур 1-3-4-2-1 (рис. 1.14, а) можно получить из контуров 1-3-4-1 и 1-4-2-1 путем удаления ветви 1-4. Поэтому уравнение для контура 1-3-4-2-1 является следствием уравнений (1.23), (1.24а) и получается путем их суммирования. Далее будет дано наиболее общее правило выбора контуров, обеспечивающих получение независимых уравнений.
Вторым законом Кирхгофа можно пользоваться для определения напряжения между двумя произвольными точками схемы. В этом случае необходимо ввести в левую часть уравнений (1.20) искомое напряжение вдоль пути, как бы дополняющего незамкнутый контур до замкнутого. Например, для определения напряжения U 52 (рис. 1.14, а) можно написать уравнение для контура 2-1-5-2

или для контура 5-4-2-5

откуда легко найти искомое напряжение.
Пример 1.2.
Пользуясь законами Кирхгофа, написать два выражения для тока I 0 в ветви с гальванометром (рис. 1.15), приняв известным в одном случае ток I , а в другом напряжение U .
Решение.
На основании законов Кирхгофа напишем для заданной схемы с шестью неизвестными токами уравнения:

Решив совместно эти уравнения, получим выражения для тока I 0 при заданном напряжении U

и при заданном токе I

Для полной характеристики электрического состояния цепи надо знать не только токи и напряжения, но также мощности источников и приемников энергии.
В соответствии с законом сохранения энергии развиваемая всеми источниками мощность равна суммарной мощности приемников и мощности потерь в источниках (из-за внутренних сопротивлений)

В левой части (1.25) суммы алгебраические. Это значит, что если при заданных направлениях действия источника ЭДС (см. рис. 1.7) или тока (см. рис. 1.8) для тока I в источнике ЭДС или напряжения U 12 на выводах источника тока получится отрицательное численное значение, то этот источник в действительности не разовьет мощность, а получит ее от других источников. Соответствующее слагаемое в левой части (1.25) получится со знаком минус. Если требуется найти необходимую мощность источников питания цепи, то такие слагаемые следует записать с обратным знаком в правой части (1.25).

Правила (законы) Кирхгофа простыми словами

На практике часто встречаются задачи по расчётам параметров токов и напряжений в различных разветвлённых цепях. В качестве инструмента для расчётов используют правила Кирхгофа (в некоторой литературе их называют еще законами, хотя это не совсем корректно) – одни из фундаментальных правил, которые совместно с законами Ома позволяет определять параметры независимых контуров в самых сложных цепях.

Учёный Густав Киргхоф сформулировал два правила [1], для понимания которых введено понятие узла, ветви, контура. В нашей ситуации ветвью будем называть участок, по которому протекает один и тот же ток. Точки соединения ветвей образуют узлы. Ветви вместе с узлами образуют контуры – замкнутые пути, по которым течёт ток.

Первое правило Кирхгофа

Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.

На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.

Схема контура

Рис. 1. Схема контура

Ток I1 входит в узел A, образованный ветвями контура. На схеме электрический заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.

На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.

Абстрактный узел

Рис. 2. Абстрактный узел

Запишем наши выводы в алгебраической форме, для общего случая:

Формула сумма токов

Для использования этой формулы, требуется учитывать знаки. Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору.

Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.

Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».

Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.

Второе правило Киргхофа

Из третьего уравнения Максвелла вытекает правило Кирхгофа для напряжений. Его ещё называют вторым законом.

При этом токи и ЭДС, векторы которых совпадают с направлением (выбирается произвольно) обхода контура, считаются положительными, а встречные к обходу токи – отрицательными.

Иллюстрация второго правила Кирхгофа

Рис. 4. Иллюстрация второго правила Кирхгофа

Формулы, которые изображены на рисунке применяются в частных случаях для вычисления параметров простых схем.

Формулировки уравнений общего характера:

Формулы для второго правила киргхофа

, где где Lk и Ck – это индуктивности и ёмкости, соответственно.

Линейные уравнения справедливы как для линейных, так и для нелинейных линеаризованных цепей. Они применяются при любом характере временных изменений токов и напряжений, для разных источников ЭДС. При этом законы Кирхгофа справедливы и для магнитных цепей. Это позволяет выполнять вычисления для поиска соответствующие параметров.

Закон Кирхгофа для магнитной цепи

Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.

Магнитные контуры цепей

Рис. 4. Магнитные контуры цепей

То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.

Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений». Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода. ( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).

Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.

При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».

Примеры расчета цепей

Рассмотрим ещё раз рисунок 3. На нём изображено 4 разнонаправленных вектора: i1, i2, i3, i4. Из них – два входящие ( i2, i3) и два исходящие из узла (i1, i4). Положительными будем считать те векторы, которые направлены в точку соединения ветвей, а остальные – отрицательными.

Тогда, по формуле Кирхгофа, составим уравнение и запишем его в следующем виде: – i1 + i2 + i3 – i4 = 0.

На практике такие узлы являются частью контуров, обходя которые можно составить ещё несколько линейных уравнений с этими же неизвестными. Количество уравнений всегда достаточно для решения задачи.

Рассмотрим алгоритм решения на примере рис. 5.

Пример для расчёта

Рис. 5. Пример для расчёта

Схема содержит 3 ветви и два узла, которые образуют три пары по два независимых контура:

  1. 1 и 2.
  2. 1 и 3.
  3. 2 и 3.

Запишем независимое уравнение, выполняющееся, например, в точке а. Из первого правила Кирхгофа вытекает: I1 + I2 – I3 = 0.

Воспользуемся вторым правилом Кирхгофа. Для составления уравнений можно выбрать любой из контуров, но нам необходимы контуры с узлом а, так как для него мы уже составили уравнение. Это будут контуры 1 и 2.

Пишем уравнения:

  • I1R1 + I3 R3 = E1;
  • I2R2 + I3R3 = E2.

Решаем систему уравнений:

Система уравнений

Так как значения R и E известны (см. рисунок 5), мы придём к системе уравнений:

Система уравнений

Решая эту систему, получим:

  1. I1 = 1,36 (значения в миллиамперах).
  2. I2 = 2,19 мА.;
  3. I3 = 3,55 мА.

Потенциал узла а равен: Ua = I3*R3 = 3,55 × 3 = 10,65 В. Чтобы убедиться в верности наших расчётов, проверим выполнение второго правила по отношению к контуру 3:

E1 – E2 + I1R1+ I2R2 = 12 – 15 + 1,36 – 4,38 = – 0,02 ≈ 0 (с учётом погрешностей, связанных с округлениями чисел при вычислениях).

Если проверка выполнения второго правила успешно завершена, то расчёты сделаны правильно, а полученные данные являются достоверными.

Применяя правила (законы) Кирхгофа можно вычислять параметры электрической энергии для магнитных цепей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *