Геометрия. Урок 3. Треугольники
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Определение треугольника
- Виды треугольников
- Отрезки в треугольнике
- Площадь треугольника
- Равнобедренный треугольник
- Равносторонний треугольник
- Прямоугольный треугольник
- Примеры решений заданий из ОГЭ
Определение треугольника
Треугольник – многоугольник с тремя сторонами и тремя углами.
Угол ∠ A – угол, образованный сторонами A B и A C и противолежащий стороне B C .
Угол ∠ B – угол, образованный сторонами B A и B C и противолежащий стороне A C .
Угол ∠ C – угол, образованный сторонами C B и C A и противолежащий стороне A B .
Виды треугольников
Треугольник остроугольный , если все три угла в треугольнике острые.
Треугольник прямоугольный , если у него один из углов прямой ( = 90 ° ) .
Треугольник тупоугольный , если у него один из углов тупой.
Основные свойства треугольника:
- Против большей стороны лежит больший угол.
- Против равных сторон лежат равные углы.
- Сумма углов в треугольнике равна 180 ° .
- Если продолжить одну из сторон треугольника, например, A C , и взять на продолжении стороны точку D , образуется внешний угол ∠ B C D к исходному углу ∠ A C B .
Отрезки в треугольнике
Биссектриса угла – луч, выходящий из вершины угла и делящий его пополам.
Биссектриса треугольника – отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне.
Свойства биссектрис треугольника:
- Биссектриса угла – геометрическое место точек, равноудаленных от сторон угла.
- Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам:
Замечание: биссектриса угла – это луч, а биссектриса треугольника – отрезок.
Медиана треугольника – отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.
Свойства медиан треугольника:
- Медиана разбивает треугольник на два равновеликих треугольника (два треугольника, имеющих одинаковую площадь).
- Медианы треугольника пересекаются в одной точке. Точка пересечения медиан делит их в отношении 2:1, считая от вершины.
Высота треугольника – это перпендикуляр, проведенный из вершины угла треугольника к прямой, содержащей противолежащую сторону этого треугольника.
Если треугольник остроугольный, то все три высоты будут лежать внутри треугольника. Если треугольник тупоугольный, то высоты, проведенные из вершин острых углов будут лежать вне треугольника, а высота, проведенная из вершины тупого угла будет лежать внутри треугольника.
Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
Свойство средней линии треугольника: средняя линия параллельна одной из его сторон и равна половине этой стороны.
Всего в треугольнике можно провести три средние линии. Три средние линии разбивают исходный треугольник на четыре равных треугольника. Площадь каждого маленького треугольника будет равна четверти площади большого треугольника.
Площадь треугольника
Площадь произвольного треугольника можно найти следующими способами:
-
Полупроизведение стороны на высоту, проведенную к этой стороне.
Равнобедренный треугольник
Равнобедренным называется треугольник, у которого две стороны равны.
Равнобедренный треугольник может быть остроугольным, прямоугольным и тупоугольным.
Свойства равноберенного треугольника:
- В равнобедренном треугольнике углы при основании равны.
- В равнобедренном треугольнике медиана, высота и биссектриса, проведенные к основанию, совпадают.
Равносторонний треугольник
Равносторонним называется треугольник, у которого все стороны и все углы равны.
Площадь равностороннего треугольника находится по формуле S = a 2 3 4
Высота равностороннего треугольника находится по формуле h = a 3 2
Прямоугольный треугольник
Треугольник называется прямоугольным, если у него один из углов равен 90 ° .
Свойства прямоугольного треугольника:
- Сумма двух острых углов треугольника равна 90 ° .
- Катет, лежащий напротив угла в 30 ° , равен половине гипотенузы.
- Если катет равен половине гипотенузы, он лежит напротив угла в 30 ° .
Теорема Пифагора
Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
У прямоугольного треугольника катеты перпендикулярны друг другу, следовательно, площадь можно найти по формуле:
Как выглядит равнобедренный остроугольный треугольник
Одна из центральных тем на уроках геометрии – остроугольный треугольник, составная часть своих более сложных аналогов и иных тригонометрических форм.
Азы изучения точной науки начинаются с рассмотрения уникальной комбинации из трех сторон и острых углов.
Виды, признаки и свойства остроугольных треугольников
Трехсторонние фигуры разделяются на множество подвидов и категорий.
Общая классификация по наибольшему углу делит их на 3 группы:
Они располагают как общими для формы с тремя сторонами характеристиками, так и специфическими признаками.
3 угла, сумма которых равна 180°, (величина каждого меньше 90°) и 3 стороны;
сумма длин любых двух сторон больше оставшейся третьей.
Свойства остроугольной фигуры определяются вспомогательными геометрическими линиями, всегда находящимися внутри него:
1. Биссектрисы, делящие углы пополам, являются центром, вокруг которого можно нарисовать вписанную окружность.
2. Высоты пересекаются в одной точке, образуя ортоцентр.
3. Медианы в точке пересечения пролегают в пропорции 2:1 (2 трети до центра и 1 треть после).
Уникальные особенности зависят от разновидностей фигуры.
Равносторонний треугольник
«Идеальный» правильный треугольник, облегчающий решение задач. Определение, форма и свойства данной геометрической формы исходят из названия — все углы равны 60°, а стороны равны друг другу.
Полное равенство придает и другую особенность: медианы, биссектрисы и высоты полностью совпадают.
Разносторонний треугольник
Наиболее часто встречаемый на чертежах в геометрии вариант, один из самых трудноразрешимых видов. Разносторонними бывают и прямоугольные, и тупоугольные фигуры.
Уникальных отличий не имеет, только общие:
все параметры имеют разные значения;
совпадений между вспомогательными линиями нет.
Равнобедренный остроугольный треугольник
Здесь при основании (стороне, не равной остальным) находятся равные друг другу 2 стороны и 2 угла. Выглядит как вытянутый в одну сторону равносторонний треугольник.
проведенная к основанию линия – и биссектриса, и высота, и медиана;
вспомогательные линии из крайних точек при основании совпадают.
Равнобедренный тупоугольный треугольник
Пусть он и называется равнобедренным, но из-за наличия угла более 90° не является остроугольным и является представителем другой группы.
Начертить его сложнее (рисунок следует начинать с основания и 2 острых углов и уже после создавать тупой), но процесс решения и изучения прост.
Отличие у него одно – точка пересечения двух высот, проведенных от углов при основании, выходит за периметр треугольника. Чтобы ее обозначить, необходимо нарисовать «продолжения» равнобедренных линий. Все остальные свойства совпадают.
В ключевых и фундаментальных разделах математики именно треугольник является основой для доказательства многих теорем и помощью в решении множества задач. Твердое знание его свойств откроет путь к успехам в расчетах, вычислениях, оформлении чертежей и фото в проектных работах.
Равнобедренный треугольник: свойства, признаки и формулы
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Определение равнобедренного треугольника
Какой треугольник называется равнобедренным?
Равнобедренным называется треугольник, у которого две стороны равны. |
Давайте посмотрим на такой треугольник:
На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.
А вот как называются стороны равнобедренного треугольника:
AB и BC — боковые стороны,
AC — основание треугольника.
Для понимания материала нам придется вспомнить, что такое биссектриса, медиана и высота, если вы вдруг забыли.
Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.
Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.
Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.
Медиана — отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.
Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».
В данном треугольнике медианой является отрезок BH.
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на прямую, содержащую сторону треугольника.
Высотой в представленном равнобедренном треугольнике является отрезок BH.
Признаки равнобедренного треугольника
Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.
- Если у треугольника два угла равны, то этот треугольник — равнобедренный.
- Если высота треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник — равнобедренный.
- Если высота треугольника совпадает с его биссектрисой, проведенной из того же угла, то такой треугольник — равнобедренный.
- Если биссектриса треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник снова равнобедренный!
Свойства равнобедренного треугольника
Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 4 теоремы о его свойствах.
Теорема 1. В равнобедренном треугольнике углы при основании равны.
Пусть AС — основание равнобедренного треугольника. Проведем биссектрису DK. Треугольник ADK равен треугольнику CDK по двум сторонам и углу между ними (AD = DC, DK — общая, а так как DK — биссектриса, то угол ADK равен углу CDK). Из равенства треугольников следует равенство всех соответствующих элементов, значит угол A равен углу C. Изи!
Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
Δ ABH = Δ CBH по двум сторонам и углу между ними (углы ABH и CBH равны, потому что BH биссектриса, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Значит, во-первых, AH = HC и BH — медиана.
Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит, они равны по 90 градусов и BH — высота.
Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Δ ABH = Δ CBH по трём сторонам (AH = CH равны, потому что BH медиана, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.
Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит они равны по 90 градусов и BH — высота.
Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
Δ ABH = Δ CBH по признаку прямоугольных треугольников, равенство гипотенуз и соответствующих катетов (AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.
Во-вторых, AH = HC и BH — медиана.
Примеры решения задач
Нет ничего приятнее, чем поупражняться и поискать углы и стороны в равнобедренном треугольнике. Ну… почти ничего.
Задачка раз. Дан ΔABC с основанием AC: ∠C = 80°, AB = BC. Найдите ∠B.
Поскольку вы уже знакомы с различными теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны, а треугольник ABC — равнобедренный, так как AB = BC.
Значит, ∠A = ∠C = 80°.
Не должно вас удивить и то, что сумма углов треугольника равна 180°.
∠B = 180° − 80° − 80° = 20°.
Задачка два. В треугольнике ABC провели высоту BH, угол CAB равен 50°, угол HBC равен 40°. Найдите сторону BC, если BA = 5 см.
Сумма углов треугольника равна 180°, а значит в Δ ABH мы можем узнать угол ABH, который будет равен 180° − 50° − 90° = 40°.
А ведь получается, что углы ABH и HBC оба равны по 40° и BH — биссектриса.
Ну и раз уж BH является и биссектрисой, и высотой, то Δ ABC — равнобедренный, а значит BC = BA = 5 см.
Изучать свойства и признаки равнобедренного треугольника лучше всего на курсах по математике с опытными преподавателями в Skysmart.
Треугольник. Формулы определения и свойства треугольников.
В данной статье мы расскажем о классификаци и свойствах основной геометрической фигуры — треугольника. А также разберем некоторе примеры решения задач на треугольники.
Содержание:
Определение треугольника
Треугольник — это фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами. В геометрических задачах треугольник обычно изображают специальным симовлом — △, после которго пишут названия вершин треугольника напр. △ABC.
Треугольник ABC (△ABC)
- Точки A, B и C — вершины треугольника. Принято писать их большими буквами.
- Отрезки AB, BC и СА — стороны треугольника. Обычно сторонам присваивают свои названия маленькими буквами. Имя выбирают по первой вершине каждой стороны. Напр. у стороны AB первая вершина А поэтому эта сторона называется а. Тоесть AB = a, BC = b, CА = c.
- Стороны треугольника в местах соединения образуют три угла, которым обычно дают названия буквами греческого алфавита α, β, γ. Причем напротив стороны a лежит угол α, b — β, с — γ.
Углы треугольника, также, можно обозначать специальным символом — ∠. После которого пишут вершины треугольника в таком порядке чтобы вершина обозначающегося угла была в серединке. Например:
Классификация треугольников
Все треугольники можно разделить на несколько видов, различающихся между собой величиной углов или длинами сторон. Такая классификация позволяет выделить особенности каждого из них.
1.Разносторонний – треугольник, у которого все стороны имеют разную длину.
2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β
3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.
4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°
5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.
6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).
Свойства треугольника
1.Свойства углов и сторон треугольника.
- Сумма всех углов треугольника равна 180°:
- Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:
- В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:
2.Теорема синусов.
Стороны треугольника пропорциональны синусам противолежащих углов.
a | = | b | = | c |
sin α | sin β | sin γ |
3. Теорема косинусов.
Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.
4. Теорема о проекциях
Для остроугольного треугольника:
Медианы треугольника
Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.
Свойства медиан треугольника:
1. Медианы треугольника пересекаются в одной точке O. (Точка пересечения медиан называется центроидом)
2. В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)
AO | = | BO | = | CO | = | 2 |
OD | OE | OF | 1 |
3. Медиана треугольника делит треугольник на две равновеликие по площади части
4. Треугольник делится тремя медианами на шесть равновеликих треугольников.
5. Из векторов, образующих медианы, можно составить треугольник.
Свойства остроугольного треугольника: Остроугольный треугольник, элементы, свойства, признаки и формулы
Остроугольный треугольник, элементы, свойства, признаки и формулы
Остроугольный треугольник, элементы, свойства, признаки и формулы.
Остроугольный треугольник – это треугольник, у которого все углы острые.
Остроугольный треугольник (понятие и определение)
Элементы остроугольного треугольника
Свойства остроугольного треугольника
Формулы остроугольного треугольника
Остроугольный треугольник, прямоугольный треугольник, равнобедренный треугольник, равносторонний треугольник, тупоугольный треугольник
Остроугольный треугольник (понятие и определение):
Остроугольный треугольник – это треугольник, у которого все углы острые, т.е. меньше 90°.
Остроугольный треугольник – это треугольник, у которого все три угла острые. В свою очередь, острый угол – это угол, градусная мера которого составляет менее 90 градусов.
Рис. 1. Остроугольный треугольник
∠ АВС, ∠ BАC, ∠ BСA – острые углы треугольника
По определению, каждый правильный (равносторонний) треугольник также является остроугольным, но не каждый остроугольный треугольник – правильным (равносторонним). Иными словами, правильный (равносторонний) треугольник является частным случаем остроугольного треугольника. У равностороннего треугольника каждый угол составляет 60 °.
Рис. 2. Равносторонний треугольник
АВ = ВС = АС – стороны треугольника,
∠ АВС = ∠ BАC = ∠ BСA = 60° – углы треугольника
Остроугольный треугольник также может быть одновременно равнобедренным треугольником.
Рис. 3. Равнобедренный треугольник
АВ = ВС – боковые стороны, АС – основание,
∠ АВС – вершинный угол, ∠ BАC и ∠ BСA – углы при основании
Хотя в остроугольном треугольнике каждый угол меньше 90 градусов, сумма углов в треугольнике всегда равна 180 градусам.
Элементы остроугольного треугольника:
Кроме сторон и углов у одностороннего треугольника также имеются внешние углы. Внешний угол это угол, смежный с внутренним углом треугольника. У любого треугольника, в т.ч. остроугольного, 6 внешних углов, по 2 на каждый внутренний. Любой внешний угол остроугольного треугольника всегда будет тупым углом.
Рис. 4. Остроугольный треугольник и внешний угол
∠ ВСD – внешний угол
Медиана остроугольного треугольника (как и любого другого треугольника), соединяющая вершину треугольника с противоположной стороной, делит ее пополам, т.е. на два одинаковых отрезка.
Рис. 5. Остроугольный треугольник и медиана остроугольного треугольника
MС – медиана остроугольного треугольника
Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
Рис. 6. Остроугольный треугольник и высота остроугольного треугольника
MС – высота остроугольного треугольника
Высота остроугольного треугольника находится внутри треугольника. Все 3 высоты остроугольного треугольника (как и любого треугольника) пересекаются в одной точке, называемой ортоцентром.
Биссектриса в остроугольном треугольнике (как и в любом другом треугольнике) делит угол пополам. Биссектрисы пересекаются в точке, которая является центром вписанной окружности.
Рис. 7. Остроугольный треугольник и биссектриса угла остроугольного треугольника
MС – биссектриса угла остроугольного треугольника
Кроме того, биссектриса остроугольного треугольника (как и любого другого треугольника) делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника
Свойства остроугольного треугольника:
Свойства остроугольного треугольника аналогичны свойствам обычного треугольника:
1. Против большей стороны лежит больший угол, и наоборот.
Рис. 8. Остроугольный треугольник
2. Против равных сторон лежат равные углы, и наоборот.
Рис. 9. Остроугольный треугольник с равными боковыми сторонами
3. Сумма углов остроугольного треугольника равна 180°.
4. Любая сторона остроугольного треугольника меньше суммы двух других сторон и больше их разности:
Три вида треугольника. Остроугольный треугольник
При изучении математики ученики начинаются знакомиться с различными видами геометрических фигур. Сегодня речь пойдет о различных видах треугольников.
Определение
Геометрические фигуры, которые состоят из трех точек, которые не находятся на одной прямой, называются треугольниками.
Отрезки, соединяющие точки, называются сторонами, а точки – вершинами. Вершины обозначаются большими латинскими буквами, например: A, B, C.
Стороны обозначаются названиями двух точек, из которых они состоят – AB, BC, AC. Пересекаясь, стороны образуют углы. Нижняя сторона считается основанием фигуры.
Рис. 1. Треугольник ABC.
Виды треугольников
Треугольники классифицируют по углам и сторонам. Каждый из видов треугольника имеет свои свойства.
Существует три вида треугольников по углам:
- остроугольные;
- прямоугольные;
- тупоугольные.
Все углы остроугольного треугольника острые, то есть градусная мера каждого составляет не более 90 0 .
Прямоугольный треугольник содержит прямой угол. Два других угла всегда будут острыми, так как иначе сумма углов треугольника превысит 180 градусов, а это невозможно. Сторона, которая, находится напротив прямого угла, называется гипотенузой, а две другие катетами. Гипотенуза всегда больше катета.
Тупоугольный треугольник содержит тупой угол. То есть угол, величиной больше 90 градусов. Два других угла в таком треугольника будут острыми.
Рис. 2. Виды треугольников по углам.
Пифагоровым треугольником называется прямоугольник, стороны которого равны 3, 4, 5.
Причем, большая сторона является гипотенузой.
Такие треугольники часто используются для составления простых задач в геометрии. Поэтому, запомните: если две стороны треугольника равны 3, то третья обязательно будет 5. Это упростит расчеты.
Виды треугольников по сторонам:
- равносторонние;
- равнобедренные;
- разносторонние.
Равносторонний треугольник – это треугольник, у которого все стороны равны. Все углы такого треугольника равны 60 0 , то есть он всегда является остроугольным.
Равнобедренный треугольник – треугольник, у которого только две стороны равны. Эти стороны называются боковыми, а третья – основанием. Кроме того, углы при основании равнобедренного треугольника равны и всегда являются острыми.
Разносторонним или произвольным треугольником называется треугольник, у которого все длины и все углы не равны между собой.
Если в задаче нет никаких уточнений по поводу фигуры, то принято считать, что речь идет о произвольном треугольнике.
Рис. 3. Виды треугольников по сторонам.
Сумма всех углов треугольника, независимо от его вида, равна 1800.
Напротив большего угла находится большая сторона. А также длина любой стороны всегда меньше суммы двух других его сторон. Эти свойства подтверждаются теоремой о неравенстве треугольника.
Существует понятие золотого треугольника. Это равнобедренный треугольник, у которого две боковые стороны пропорциональны основе и равны определенному числу. В такой фигуре углы пропорциональны соотношению 2:2:1.
Задача:
Существует ли треугольник, стороны которого равны 6 см., 3 см., 4 см.?
Для решения данного задания нужно использовать неравенство a
Что мы узнали?
Из данного материала из курса математики 5 класса, мы узнали, что треугольники классифицируются по сторонам и величине углов. Треугольники имеют определенные свойства, которые можно использовать при решении заданий.
Некоторый треугольник , в котором все стороны не одинаковой длины, принято называть разносторонними .
Треугольник, с двумя одинаковыми сторонами обозначают как равнобедренный . Одинаковые стороны принято именовать боковыми , третью сторону — основанием. В равной мере будет верным и такое определение основания треугольника — это сторона равнобедренного треугольника, которая не равна двум другим сторонам.
В равнобедренном треугольнике углы при основании равновелики. Высота , медиана , биссектриса равнобедренного треугольника, прочерченные к его основанию, совмещаются.
Треугольник , со всеми одинаковыми сторонами, обозначают как равносторонние или правильные . В равностороннем треугольнике все углы по 60°, а центры вписанной и описанной окружности совмещены.
Типы треугольников в зависимости от параметров углов.
Треугольник , в котором только углы меньше 90 0 (острые), именуют остроугольным .
Треугольник, в котором представлен угол 90 0 , именуют прямоугольным . Стороны треугольника, формирующие прямой угол, принято обозначать катетами , а сторона расположенная напротив прямого угла — гипотенузой .
Треугольником называют фигуру, состоящую из трех соединенных между собой точек. В зависимости от углов треугольник может быть:
- Прямоугольным , если один из углов равен 90 градусов;
- Тупоугольный , если один из углов тупой, т.е. больше 90 градусов;
- Остроугольным , если все углы треугольника острые.
Для решения задач с остроугольными треугольниками часто приходится использовать теорему синусов или косинусов.
Еще в Древней Греции математики изучали треугольники. Именно греки разработали основы современной геометрии, куда входит и множество теорем о треугольниках. Например, автор теоремы Пифагора родом из Древней Греции.
Характеристики
В остроугольном треугольнике каждый угол меньше 90 градусов. Но сумма углов в треугольнике всегда равна 180. В любой фигуре вершины обозначают заглавными латинскими буквами.
Одним из элементов треугольника, вместе со сторонами и углами, является внешний угол. Внешний угол это угол, смежный с внутренним углом треугольника.
У любого треугольника 6 внешних углов, по 2 на каждый внутренний. Любой внешний угол остроугольного треугольника всегда будет тупым.
Линии остроугольного треугольника
Остроугольный треугольник обладает рядом свойств.
Медиана будет равняться половине длины той стороны геометрической фигуры, на которую она опущена. Причем можно провести этот отрезок с любой вершины.
Рис. 1. Медианы в остроугольном треугольнике
Известно, что если провести три высоты в остроугольном треугольнике, то они будут пересекаться в одной точке, которую называют ортоцентром. Эти отрезки опускают под прямым углом к противоположным сторонам. Высоты в остроугольном треугольнике разделяют эту фигуру на подобные треугольники.
Рис. 2. Высоты в остроугольном треугольнике
Биссектрисы в остроугольном треугольнике не только делят углы пополам. Эти отрезки пересекаются в точке, которая является центром вписанной окружности.
Также биссектриса разделяет сторону остроугольного треугольника на две части, которые пропорциональны соответствующим сторонам. Данное утверждение нужно запомнить, чтобы решать некоторые задачи.
Рис. 3. Биссектрисы в остроугольном треугольнике
Свойства
Если суммировать числовые значения любых двух сторон остроугольного треугольника, то обязательно получим цифру, которая будет больше третьего отрезка данной геометрической фигуры.
Средняя линия в остроугольном треугольнике параллельна одной из сторон данной фигуры и равняется половине ее половине.
Что мы узнали?
В остроугольном треугольнике каждый угол меньше 90 градусов. Общая сумма углов здесь также равняется 180 градусов. Нельзя забывать о характерных линиях треугольника. Поскольку с их помощью легко вычислить стороны данной треугольной фигуры или центр определенной окружности. А если в условиях задач по геометрии указаны углы, то можно воспользоваться тригонометрическими функциями.
Тест по теме
Оценка статьи
Средняя оценка: 4.5 . Всего получено оценок: 114.
Треугольник. Остроугольный, тупоугольный и прямоугольный треугольник.
Катеты и гипотенуза. Равнобедренный и равносторонний треугольник.
Сумма углов треугольника.
Внешний угол треугольника. Признаки равенства треугольников.
Замечательные линии и точки в треугольнике: высоты, медианы,
биссектрисы,срединны e перпендикуляры, ортоцентр,
центр тяжести, центр описанного круга, центр вписанного круга.
Теорема Пифагора. Соотношение сторон в произвольномтреугольнике.
Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.
Если все три угла острые (рис.20 ), то это остроугольный треугольник . Если один из углов прямой ( C, рис.21), то это прямоугольный треугольник ; стороны a , b , образующие прямой угол, называются катетами ; сторона c , противоположная прямому углу, называется гипотенузой . Если один из углов тупой ( B, рис.22), то это тупоугольный треугольник.
Треугольник ABC (рис.23) — равнобедренный , если две его стороны равны ( a = c ); эти равные стороны называются боковыми , третья сторона называется основанием треугольника. Треугольник ABC (рис.24) – равносторонний , если все его стороны равны ( a = b = c ). В общем случае (a ≠ b ≠ c ) имеем неравносторонний треугольник.
Основные свойства треугольников. В любом треугольнике:
1. Против большей стороны лежит больший угол, и наоборот.
2. Против равных сторон лежат равные углы, и наоборот.
В частности, все углы в равностороннем треугольнике равны.
3. Сумма углов треугольника равна 180 º .
Из двух последних свойств следует, что каждый угол в равностороннем
треугольнике равен 60 º.
4. Продолжая одну из сторон треугольника (AC, рис.25), получаем внешний
угол BCD . Внешний угол треугольника равен сумме внутренних углов,
не смежных с ним : BCD = A + B.
5. Любая сторона треугольника меньше суммы двух других сторон и больше
их разности (a b – c ;b a – c ;c a – b ).
Признаки равенства треугольников.
Треугольники равны, если у них соответственно равны:
a ) две стороны и угол между ними;
b ) два угла и прилегающая к ним сторона;
c ) три стороны.
Признаки равенства прямоугольных треугольников.
Д ва прямоугольных треугольника равны, если выполняется одно из следующих условий:
1) равны их катеты;
2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого;
3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;
4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;
5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.
Замечательные линии и точки в треугольнике.
Высота треугольника — это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольника . Три высоты треугольника всегда пересекаются в одной точке , называемой ортоцентром треугольника. Ортоцентр остроугольного треугольника (точка O , рис.26) расположен внутри треугольника, а ортоцентр тупоугольного треугольника (точка O , рис.27) – снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.
Медиана – это отрезок , соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника (AD , BE , CF , рис.28) пересекаются в одной точке O , всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.
Биссектриса – это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника (AD , BE , CF , рис.29) пересекаются в одной точке О, всегда лежащей внутри треугольника и являющейся центром вписанного круга (см. раздел «Вписанные и описанные многоугольники»).
Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам ; например, на рис.29 AE : CE = AB : BC .
Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника АВС (KO , MO , NO , рис.30 ) пересекаются в одной точке О, являющейся центром описанного круга (точки K , M , N – середины сторон треугольника ABC ).
В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном — в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.
Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами a , b и гипотенузой c .
Построим квадрат AKMB , используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF , сторона которого равна a + b . Теперь ясно, что площадь квадрата CDEF равна (a + b ) 2 . С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB , то есть
c 2 + 4 (ab / 2) = c 2 + 2 ab ,
c 2 + 2 ab = (a + b ) 2 ,
и окончательно имеем:
c 2 = a 2 + b 2 .
Соотношение сторон в произвольном треугольнике.
В общем случае (для произвольного треугольника) имеем:
c 2 = a 2 + b 2 – 2ab · cos C,
где C – угол между сторонами a и b .
Сегодня мы отправляемся в страну Геометрия, где познакомимся с различными видами треугольников.
Рассмотрите геометрические фигуры и найдите среди них «лишнюю» (рис. 1).
Рис. 1. Иллюстрация к примеру
Мы видим, что фигуры № 1, 2, 3, 5 — четырехугольники. Каждая из них имеет свое название (рис. 2).
Рис. 2. Четырехугольники
Значит, «лишней» фигурой является треугольник (рис. 3).
Рис. 3. Иллюстрация к примеру
Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки.
Точки называются вершинами треугольника , отрезки — его сторонами . Стороны треугольника образуют в вершинах треугольника три угла.
Основными признаками треугольника являются три стороны и три угла. По величине угла треугольники бывают остроугольные, прямоугольные и тупоугольные.
Треугольник называется остроугольным, если все три угла его острые, то есть меньше 90° (рис. 4).
Рис. 4. Остроугольный треугольник
Треугольник называется прямоугольным, если один из его углов равен 90° (рис. 5).
Рис. 5. Прямоугольный треугольник
Треугольник называется тупоугольным, если один из его углов тупой, то есть больше 90° (рис. 6).
Рис. 6. Тупоугольный треугольник
По числу равных сторон треугольники бывают равносторонние, равнобедренные, разносторонние.
Равнобедренным называется треугольник, у которого две стороны равны (рис. 7).
Рис. 7. Равнобедренный треугольник
Эти стороны называются боковыми , третья сторона — основанием . В равнобедренном треугольнике углы при основании равны.
Равнобедренные треугольники бывают остроугольными и тупоугольными (рис. 8).
Рис. 8. Остроугольный и тупоугольный равнобедренные треугольники
Равносторонним называется треугольник, у которого все три стороны равны (рис. 9).
Рис. 9. Равносторонний треугольник
В равностороннем треугольнике все углы равны . Равносторонние треугольники всегда остроугольные.
Разносторонним называется треугольник, у которого все три стороны имеют разную длину (рис. 10).
Рис. 10. Разносторонний треугольник
Выполните задание. Распределите данные треугольники на три группы (рис. 11).
Рис. 11. Иллюстрация к заданию
Сначала распределим по величине углов.
Остроугольные треугольники: № 1, № 3.
Прямоугольные треугольники: № 2, № 6.
Тупоугольные треугольники: № 4, № 5.
Эти же треугольники распределим на группы по числу равных сторон.
Разносторонние треугольники: № 4, № 6.
Равнобедренные треугольники: № 2, № 3, № 5.
Равносторонний треугольник: № 1.
Подумайте, из какого куска проволоки сделали каждый треугольник (рис. 12).
Рис. 12. Иллюстрация к заданию
Можно рассуждать так.
Первый кусок проволоки разделен на три равные части, поэтому из него можно сделать равносторонний треугольник. На рисунке он изображен третьим.
Второй кусок проволоки разделен на три разные части, поэтому из него можно сделать разносторонний треугольник. На рисунке он изображен первым.
Третий кусок проволоки разделен на три части, где две части имеют одинаковую длину, значит, из него можно сделать равнобедренный треугольник. На рисунке он изображен вторым.
Сегодня на уроке мы познакомились с различными видами треугольников.
Список литературы
- М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. — М.: «Просвещение», 2012.
- М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. — М.: «Просвещение», 2012.
- М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. — М.: Просвещение, 2012.
- Нормативно-правовой документ. Контроль и оценка результатов обучения. — М.: «Просвещение», 2011.
- «Школа России»: Программы для начальной школы. — М.: «Просвещение», 2011.
- С.И. Волкова. Математика: Проверочные работы. 3 класс. — М.: Просвещение, 2012.
- В.Н. Рудницкая. Тесты. — М.: «Экзамен», 2012.
- Nsportal.ru ().
- Prosv.ru ().
- Do.gendocs.ru ().
Домашнее задание
1. Закончите фразы.
а) Треугольником называется фигура, которая состоит из …, не лежащих на одной прямой, и …, попарно соединяющих эти точки.
б) Точки называются … , отрезки — его … . Стороны треугольника образуют в вершинах треугольника ….
в) По величине угла треугольники бывают … , … , … .
г) По числу равных сторон треугольники бывают … , … , … .
а) прямоугольный треугольник;
б) остроугольный треугольник;
в) тупоугольный треугольник;
г) равносторонний треугольник;
д) разносторонний треугольник;
е) равнобедренный треугольник.
3. Составьте задание по теме урока для своих товарищей.
Рекомендуем статьи по теме
Присоединяйтесь к нашим сообществам в социальных сетях
© 2023
goaravetisyan.ru
Все права защищены. Возрастной рейтинг 16+
Присоединяйтесь к нашим сообществам
в социальных сетях
Женский журнал о красоте и моде
Контактные данные для государственных органов (в том числе, для Роскомнадзора):
E-mail:
Женский журнал о красоте и моде
Франко-германская война (1870–1871 годы)
Франко-прусская война (причины и последствия)
Венский конгресс Какие страны участвовали в конгрессе
Виды треугольников
Треугольники бывают остроугольными, тупоугольными, прямоугольными, разносторонними, равносторонними, равнобедренными.
Определение 1. Треугольник называется остроугольным, если все ее углы острые, т.е. меньше 90° (Рис.1).
![]() |
Определение 2. Треугольник называется тупоугольным, если один из его углов тупой, т.е. больше 90° (Рис.2).
![]() |
Если треугольник тупоугольный, то исходя из того, что сумма всех углов треугольника равна 180°, остальные два угла треугольника будут острыми.
Определение 3. Треугольник называется прямоугольным, если один из его углов прямой, т.е. равен 90° (Рис.3).
![]() |
Если треугольник прямоугольный, то исходя из того, что сумма всех углов треугольника равна 180°, остальные два угла треугольника будут острыми.
Определение 4. Треугольник называется разносторонним, если длины всех сторон треугольника разные (Рис.4).
![]() |
Определение 5. Треугольник называется равносторонним или правильным, если длины всех сторон равны (Рис.5).
![]() |
Определение 6. Треугольник называется равнобедренным, если длины двух сторон равны (Рис.6).
![]() |
В равнобедренном треугольнике равные стороны называются боковыми сторонами треугольника, а третья сторона называется основанием.
Три вида треугольника. Остроугольный треугольник
При изучении математики ученики начинаются знакомиться с различными видами геометрических фигур. Сегодня речь пойдет о различных видах треугольников.
Определение
Геометрические фигуры, которые состоят из трех точек, которые не находятся на одной прямой, называются треугольниками.
Отрезки, соединяющие точки, называются сторонами, а точки – вершинами. Вершины обозначаются большими латинскими буквами, например: A, B, C.
Стороны обозначаются названиями двух точек, из которых они состоят – AB, BC, AC. Пересекаясь, стороны образуют углы. Нижняя сторона считается основанием фигуры.
Рис. 1. Треугольник ABC.
Виды треугольников
Треугольники классифицируют по углам и сторонам. Каждый из видов треугольника имеет свои свойства.
Существует три вида треугольников по углам:
- остроугольные;
- прямоугольные;
- тупоугольные.
Все углы остроугольного треугольника острые, то есть градусная мера каждого составляет не более 90 0 .
Прямоугольный треугольник содержит прямой угол. Два других угла всегда будут острыми, так как иначе сумма углов треугольника превысит 180 градусов, а это невозможно. Сторона, которая, находится напротив прямого угла, называется гипотенузой, а две другие катетами. Гипотенуза всегда больше катета.
Тупоугольный треугольник содержит тупой угол. То есть угол, величиной больше 90 градусов. Два других угла в таком треугольника будут острыми.
Рис. 2. Виды треугольников по углам.
Пифагоровым треугольником называется прямоугольник, стороны которого равны 3, 4, 5.
Причем, большая сторона является гипотенузой.
Такие треугольники часто используются для составления простых задач в геометрии. Поэтому, запомните: если две стороны треугольника равны 3, то третья обязательно будет 5. Это упростит расчеты.
Виды треугольников по сторонам:
- равносторонние;
- равнобедренные;
- разносторонние.
Равносторонний треугольник – это треугольник, у которого все стороны равны. Все углы такого треугольника равны 60 0 , то есть он всегда является остроугольным.
Равнобедренный треугольник – треугольник, у которого только две стороны равны. Эти стороны называются боковыми, а третья – основанием. Кроме того, углы при основании равнобедренного треугольника равны и всегда являются острыми.
Разносторонним или произвольным треугольником называется треугольник, у которого все длины и все углы не равны между собой.
Если в задаче нет никаких уточнений по поводу фигуры, то принято считать, что речь идет о произвольном треугольнике.
Рис. 3. Виды треугольников по сторонам.
Сумма всех углов треугольника, независимо от его вида, равна 1800.
Напротив большего угла находится большая сторона. А также длина любой стороны всегда меньше суммы двух других его сторон. Эти свойства подтверждаются теоремой о неравенстве треугольника.
Существует понятие золотого треугольника. Это равнобедренный треугольник, у которого две боковые стороны пропорциональны основе и равны определенному числу. В такой фигуре углы пропорциональны соотношению 2:2:1.
Задача:
Существует ли треугольник, стороны которого равны 6 см., 3 см., 4 см.?
Для решения данного задания нужно использовать неравенство a
Что мы узнали?
Из данного материала из курса математики 5 класса, мы узнали, что треугольники классифицируются по сторонам и величине углов. Треугольники имеют определенные свойства, которые можно использовать при решении заданий.
Некоторый треугольник , в котором все стороны не одинаковой длины, принято называть разносторонними .
Треугольник, с двумя одинаковыми сторонами обозначают как равнобедренный . Одинаковые стороны принято именовать боковыми , третью сторону — основанием. В равной мере будет верным и такое определение основания треугольника — это сторона равнобедренного треугольника, которая не равна двум другим сторонам.
В равнобедренном треугольнике углы при основании равновелики. Высота , медиана , биссектриса равнобедренного треугольника, прочерченные к его основанию, совмещаются.
Треугольник , со всеми одинаковыми сторонами, обозначают как равносторонние или правильные . В равностороннем треугольнике все углы по 60°, а центры вписанной и описанной окружности совмещены.
Типы треугольников в зависимости от параметров углов.
Треугольник , в котором только углы меньше 90 0 (острые), именуют остроугольным .
Треугольник, в котором представлен угол 90 0 , именуют прямоугольным . Стороны треугольника, формирующие прямой угол, принято обозначать катетами , а сторона расположенная напротив прямого угла — гипотенузой .
Треугольником называют фигуру, состоящую из трех соединенных между собой точек. В зависимости от углов треугольник может быть:
- Прямоугольным , если один из углов равен 90 градусов;
- Тупоугольный , если один из углов тупой, т.е. больше 90 градусов;
- Остроугольным , если все углы треугольника острые.
Для решения задач с остроугольными треугольниками часто приходится использовать теорему синусов или косинусов.
Еще в Древней Греции математики изучали треугольники. Именно греки разработали основы современной геометрии, куда входит и множество теорем о треугольниках. Например, автор теоремы Пифагора родом из Древней Греции.
Характеристики
В остроугольном треугольнике каждый угол меньше 90 градусов. Но сумма углов в треугольнике всегда равна 180. В любой фигуре вершины обозначают заглавными латинскими буквами.
Одним из элементов треугольника, вместе со сторонами и углами, является внешний угол. Внешний угол это угол, смежный с внутренним углом треугольника.
У любого треугольника 6 внешних углов, по 2 на каждый внутренний. Любой внешний угол остроугольного треугольника всегда будет тупым.
Линии остроугольного треугольника
Остроугольный треугольник обладает рядом свойств.
Медиана будет равняться половине длины той стороны геометрической фигуры, на которую она опущена. Причем можно провести этот отрезок с любой вершины.
Рис. 1. Медианы в остроугольном треугольнике
Известно, что если провести три высоты в остроугольном треугольнике, то они будут пересекаться в одной точке, которую называют ортоцентром. Эти отрезки опускают под прямым углом к противоположным сторонам. Высоты в остроугольном треугольнике разделяют эту фигуру на подобные треугольники.
Рис. 2. Высоты в остроугольном треугольнике
Биссектрисы в остроугольном треугольнике не только делят углы пополам. Эти отрезки пересекаются в точке, которая является центром вписанной окружности.
Также биссектриса разделяет сторону остроугольного треугольника на две части, которые пропорциональны соответствующим сторонам. Данное утверждение нужно запомнить, чтобы решать некоторые задачи.
Рис. 3. Биссектрисы в остроугольном треугольнике
Свойства
Если суммировать числовые значения любых двух сторон остроугольного треугольника, то обязательно получим цифру, которая будет больше третьего отрезка данной геометрической фигуры.
Средняя линия в остроугольном треугольнике параллельна одной из сторон данной фигуры и равняется половине ее половине.
Что мы узнали?
В остроугольном треугольнике каждый угол меньше 90 градусов. Общая сумма углов здесь также равняется 180 градусов. Нельзя забывать о характерных линиях треугольника. Поскольку с их помощью легко вычислить стороны данной треугольной фигуры или центр определенной окружности. А если в условиях задач по геометрии указаны углы, то можно воспользоваться тригонометрическими функциями.
Тест по теме
Оценка статьи
Средняя оценка: 4.5 . Всего получено оценок: 114.
Треугольник. Остроугольный, тупоугольный и прямоугольный треугольник.
Катеты и гипотенуза. Равнобедренный и равносторонний треугольник.
Сумма углов треугольника.
Внешний угол треугольника. Признаки равенства треугольников.
Замечательные линии и точки в треугольнике: высоты, медианы,
биссектрисы,срединны e перпендикуляры, ортоцентр,
центр тяжести, центр описанного круга, центр вписанного круга.
Теорема Пифагора. Соотношение сторон в произвольномтреугольнике.
Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.
Если все три угла острые (рис.20 ), то это остроугольный треугольник . Если один из углов прямой ( C, рис.21), то это прямоугольный треугольник ; стороны a , b , образующие прямой угол, называются катетами ; сторона c , противоположная прямому углу, называется гипотенузой . Если один из углов тупой ( B, рис.22), то это тупоугольный треугольник.
Треугольник ABC (рис.23) — равнобедренный , если две его стороны равны ( a = c ); эти равные стороны называются боковыми , третья сторона называется основанием треугольника. Треугольник ABC (рис.24) – равносторонний , если все его стороны равны ( a = b = c ). В общем случае (a ≠ b ≠ c ) имеем неравносторонний треугольник.
Основные свойства треугольников. В любом треугольнике:
1. Против большей стороны лежит больший угол, и наоборот.
2. Против равных сторон лежат равные углы, и наоборот.
В частности, все углы в равностороннем треугольнике равны.
3. Сумма углов треугольника равна 180 º .
Из двух последних свойств следует, что каждый угол в равностороннем
треугольнике равен 60 º.
4. Продолжая одну из сторон треугольника (AC, рис.25), получаем внешний
угол BCD . Внешний угол треугольника равен сумме внутренних углов,
не смежных с ним : BCD = A + B.
5. Любая сторона треугольника меньше суммы двух других сторон и больше
их разности (a b – c ;b a – c ;c a – b ).
Признаки равенства треугольников.
Треугольники равны, если у них соответственно равны:
a ) две стороны и угол между ними;
b ) два угла и прилегающая к ним сторона;
c ) три стороны.
Признаки равенства прямоугольных треугольников.
Д ва прямоугольных треугольника равны, если выполняется одно из следующих условий:
1) равны их катеты;
2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого;
3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;
4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;
5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.
Замечательные линии и точки в треугольнике.
Высота треугольника — это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольника . Три высоты треугольника всегда пересекаются в одной точке , называемой ортоцентром треугольника. Ортоцентр остроугольного треугольника (точка O , рис.26) расположен внутри треугольника, а ортоцентр тупоугольного треугольника (точка O , рис.27) – снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.
Медиана – это отрезок , соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника (AD , BE , CF , рис.28) пересекаются в одной точке O , всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.
Биссектриса – это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника (AD , BE , CF , рис.29) пересекаются в одной точке О, всегда лежащей внутри треугольника и являющейся центром вписанного круга (см. раздел «Вписанные и описанные многоугольники»).
Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам ; например, на рис.29 AE : CE = AB : BC .
Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника АВС (KO , MO , NO , рис.30 ) пересекаются в одной точке О, являющейся центром описанного круга (точки K , M , N – середины сторон треугольника ABC ).
В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном — в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.
Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами a , b и гипотенузой c .
Построим квадрат AKMB , используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF , сторона которого равна a + b . Теперь ясно, что площадь квадрата CDEF равна (a + b ) 2 . С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB , то есть
c 2 + 4 (ab / 2) = c 2 + 2 ab ,
c 2 + 2 ab = (a + b ) 2 ,
и окончательно имеем:
c 2 = a 2 + b 2 .
Соотношение сторон в произвольном треугольнике.
В общем случае (для произвольного треугольника) имеем:
c 2 = a 2 + b 2 – 2ab · cos C,
где C – угол между сторонами a и b .
Сегодня мы отправляемся в страну Геометрия, где познакомимся с различными видами треугольников.
Рассмотрите геометрические фигуры и найдите среди них «лишнюю» (рис. 1).
Рис. 1. Иллюстрация к примеру
Мы видим, что фигуры № 1, 2, 3, 5 — четырехугольники. Каждая из них имеет свое название (рис. 2).
Рис. 2. Четырехугольники
Значит, «лишней» фигурой является треугольник (рис. 3).
Рис. 3. Иллюстрация к примеру
Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки.
Точки называются вершинами треугольника , отрезки — его сторонами . Стороны треугольника образуют в вершинах треугольника три угла.
Основными признаками треугольника являются три стороны и три угла. По величине угла треугольники бывают остроугольные, прямоугольные и тупоугольные.
Треугольник называется остроугольным, если все три угла его острые, то есть меньше 90° (рис. 4).
Рис. 4. Остроугольный треугольник
Треугольник называется прямоугольным, если один из его углов равен 90° (рис. 5).
Рис. 5. Прямоугольный треугольник
Треугольник называется тупоугольным, если один из его углов тупой, то есть больше 90° (рис. 6).
Рис. 6. Тупоугольный треугольник
По числу равных сторон треугольники бывают равносторонние, равнобедренные, разносторонние.
Равнобедренным называется треугольник, у которого две стороны равны (рис. 7).
Рис. 7. Равнобедренный треугольник
Эти стороны называются боковыми , третья сторона — основанием . В равнобедренном треугольнике углы при основании равны.
Равнобедренные треугольники бывают остроугольными и тупоугольными (рис. 8).
Рис. 8. Остроугольный и тупоугольный равнобедренные треугольники
Равносторонним называется треугольник, у которого все три стороны равны (рис. 9).
Рис. 9. Равносторонний треугольник
В равностороннем треугольнике все углы равны . Равносторонние треугольники всегда остроугольные.
Разносторонним называется треугольник, у которого все три стороны имеют разную длину (рис. 10).
Рис. 10. Разносторонний треугольник
Выполните задание. Распределите данные треугольники на три группы (рис. 11).
Рис. 11. Иллюстрация к заданию
Сначала распределим по величине углов.
Остроугольные треугольники: № 1, № 3.
Прямоугольные треугольники: № 2, № 6.
Тупоугольные треугольники: № 4, № 5.
Эти же треугольники распределим на группы по числу равных сторон.
Разносторонние треугольники: № 4, № 6.
Равнобедренные треугольники: № 2, № 3, № 5.
Равносторонний треугольник: № 1.
Подумайте, из какого куска проволоки сделали каждый треугольник (рис. 12).
Рис. 12. Иллюстрация к заданию
Можно рассуждать так.
Первый кусок проволоки разделен на три равные части, поэтому из него можно сделать равносторонний треугольник. На рисунке он изображен третьим.
Второй кусок проволоки разделен на три разные части, поэтому из него можно сделать разносторонний треугольник. На рисунке он изображен первым.
Третий кусок проволоки разделен на три части, где две части имеют одинаковую длину, значит, из него можно сделать равнобедренный треугольник. На рисунке он изображен вторым.
Сегодня на уроке мы познакомились с различными видами треугольников.
Список литературы
- М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. — М.: «Просвещение», 2012.
- М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. — М.: «Просвещение», 2012.
- М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. — М.: Просвещение, 2012.
- Нормативно-правовой документ. Контроль и оценка результатов обучения. — М.: «Просвещение», 2011.
- «Школа России»: Программы для начальной школы. — М.: «Просвещение», 2011.
- С.И. Волкова. Математика: Проверочные работы. 3 класс. — М.: Просвещение, 2012.
- В.Н. Рудницкая. Тесты. — М.: «Экзамен», 2012.
- Nsportal.ru ().
- Prosv.ru ().
- Do.gendocs.ru ().
Домашнее задание
1. Закончите фразы.
а) Треугольником называется фигура, которая состоит из …, не лежащих на одной прямой, и …, попарно соединяющих эти точки.
б) Точки называются … , отрезки — его … . Стороны треугольника образуют в вершинах треугольника ….
в) По величине угла треугольники бывают … , … , … .
г) По числу равных сторон треугольники бывают … , … , … .
а) прямоугольный треугольник;
б) остроугольный треугольник;
в) тупоугольный треугольник;
г) равносторонний треугольник;
д) разносторонний треугольник;
е) равнобедренный треугольник.
3. Составьте задание по теме урока для своих товарищей.
Рекомендуем статьи по теме
Присоединяйтесь к нашим сообществам в социальных сетях
© 2023
goaravetisyan.ru
Все права защищены. Возрастной рейтинг 16+
Присоединяйтесь к нашим сообществам
в социальных сетях
Женский журнал о красоте и моде
Контактные данные для государственных органов (в том числе, для Роскомнадзора):
E-mail:
Женский журнал о красоте и моде
Артиллерия россии Российские артиллерийские системы
Убийственная правда: шансы крейсера «Петр Великий» поразить американский авианосец ничтожны
Участие ссср, сша и китая в корейской войне
myubi.tv
Как выглядит остроугольный равнобедренный треугольник?
Как выглядит равнобедренный остроугольный треугольник? Равнобедренный остроугольный треугольник выглядит как остроугольный треугольник с двумя равными сторонами и двумя равными углами меньше 90 градусов.
Существует ли остроугольный равнобедренный треугольник?
В геометрии равнобедренный треугольник — это треугольник, у которого две стороны одинаковой длины. … Два угла, противоположные катетам, равны и всегда острые., поэтому классификация треугольника как острого, прямоугольного или тупоугольного зависит только от угла между двумя его катетами.
Чему равен острый угол равнобедренного треугольника?
См. Также, почему западные штаты были более открыты для избирательного права женщин.
Как выглядит остроугольный треугольник?
Как построить остроугольный равнобедренный треугольник?
Всегда ли равнобедренный треугольник равен 180 градусам?
Объяснение: В равнобедренном треугольнике 2 равных угла и еще один угол. Эти углы, как и в любом треугольнике, должны складываться 180.
Все ли равнобедренные треугольники имеют 3 острых угла?
Нет. В равнобедренном треугольнике может быть тупой или прямой угол.
Что является примером остроугольного треугольника?
Как узнать, является ли треугольник остроугольным?
Остроугольный треугольник имеет три угла, каждый из которых меньше 90 градусов. Тупоугольный треугольник – это треугольник, у которого один угол больше 90 градусов. Прямоугольный треугольник – это треугольник, у которого один угол равен 90 градусов.
Какие фигуры являются острыми углами?
Сколько острых углов в остроугольном треугольнике?
Что такое острый угол?
Острые углы угол меньше 90 градусов. Прямые углы измеряют 90 градусов. Тупые углы измеряют больше 90 градусов.
Остроугольные треугольники в сумме дают 180?
Может ли быть остроугольный треугольник?
Треугольник, у которого все три внутренних угла острые (меньше 90 градусов). Меньше 90° — все три угла острые, значит треугольник остроугольный. … Ровно 90° – это прямоугольный треугольник.
Все ли треугольники равны 180?
Сумма углов треугольника всегда будет равна 180°. Сумма углов четырехугольника равна 360°, а треугольник можно получить, разрезав четырехугольник пополам от угла к углу. Поскольку треугольник по существу является половиной четырехугольника, его угловая мера также должна быть равна половине. Половина 360° составляет 180°.
Все ли равнобедренные треугольники имеют два острых угла?
Смотрите также, что использует световую энергию
Объяснение: А треугольник должен иметь не менее двух острых углов; если тупой, то и — острые углы . Поскольку он равнобедренный, теорема о равнобедренном треугольнике требует, чтобы два угла были равны; они должны быть двумя острыми углами и .
Как выглядит тупоугольный треугольник?
Какой треугольник является остроугольным?
Остроугольный треугольник это треугольник, в котором каждый угол острый. Любой треугольник, не являющийся остроугольным, является либо прямоугольным, либо тупоугольным треугольником. Все углы острого треугольника меньше 90 градусов. Например, равносторонний треугольник всегда остроугольный, так как все углы (равные 60) меньше 90.
Что такое острый угол пример?
Какой треугольник кажется остроугольным?
Как узнать, является ли треугольник равнобедренным?
Равнобедренный треугольник: Говорят, что треугольник является равнобедренным. если любая из его двух сторон равна. Если X, Y, Z — три стороны треугольника. Тогда треугольник является равнобедренным, если либо X = Y, либо X = Z, либо Y = Z. Разносторонний треугольник: Треугольник называется разносторонним треугольником, если ни одна из его сторон не равна.
Как узнать, остроугольный треугольник или длины сторон?
Как узнать, остроугольный треугольник или длины сторон?
Классификация треугольников Вы можете определить, является ли треугольник остроугольным, прямоугольным или тупоугольным по длинам его сторон. В TABC с самой длинной стороной c: Если c2 a2 b2, то TABC острый. Если c2 a2 b2, то TABC прав.
Как найти острый угол треугольника?
Способ 1: Если даны меры углов треугольника, то проверьте меры его углов. Если все три угла треугольника меньше 90° градусов, то данный треугольник является остроугольным.
Что такое равнобедренный тупоугольный треугольник?
Пояснение: В равнобедренных треугольниках всегда два равных внутренних угла, и все три внутренних угла любого треугольника всегда имеют сумму градусов. Поскольку это тупоугольный равнобедренный треугольник, два недостающих угла должны быть острыми.
Как начертить острый угол?
Как описать острый и тупой угол?
Острый угол — Угол меньше 90 градусов. Прямой угол – угол, равный ровно 90 градусам. Тупой угол – угол больше 90 градусов и меньше 180 градусов.
Как выглядит угол 180 градусов?
Посмотрите также, какой аспект повседневной жизни древних греков раскрывает этот отрывок?
Что такое равнобедренный треугольник в геометрии?
Какой треугольник заведомо остроугольный с 2 точками?
Так как все углы острые или меньше 90 градусов, равносторонний треугольник тоже остроугольный треугольник.
Чем прямоугольный треугольник отличается от остроугольного?
В прямоугольном треугольнике один из углов прямой? угол 90 градусов. … В остроугольном треугольнике все углы меньше прямых? каждый меньше 90 градусов.
Как выглядит правое острое?
В прямоугольном треугольнике один угол равен 90° и угол, похожий на L. В тупоугольных треугольниках один угол больше 90°. В остроугольных треугольниках все углы меньше 90°.
Как называется треугольник 180 градусов?
Как найти гипотенузу?
Гипотенуза называется наибольшей стороной прямоугольного треугольника. Чтобы найти самую длинную сторону, мы используем формулу гипотенузы, которую можно легко вывести из теоремы Пифагора: (Гипотенуза)2 = (Основание)2 + (Высота)2. Формула гипотенузы = √((основание)2 + (высота)2) (или) c = √(a2 + b2).