07. Перестановки
Рассмотрим частный случай, когда k=n. Соответствующее этому случаю размещение называется перестановкой.
Перестановками из n элементов называются такие комбинации, каждая из которых содержит все n элементов и которые отличаются друг от друга лишь порядком расположения элементов.
Поясним это на следующем примере. Из этих трёх элементов: a, b и c. можно составить шесть перестановок: abc, acb, bac, bca, cab, cba. Все приведённые перестановки отличаются друг от друга только порядком их расположения.
Число перестановок n различных элементов обозначают символом Pn и равно
Пример 5.1. Сколькими способами можно расставить девять различных книг на полке, чтобы определенные четыре книги стояли рядом?
Решение. Будем считать выделенные книги за одну книгу. Тогда уже для шести книг существует P6=6!=720 перестановок. Однако четыре определенные книги можно переставить между собой P4=4!=24 способами. По принципу умножения имеем
P6P4 = 720×24 = 17280.
Пример 5.2. Сколько различных четырехзначных чисел можно составить из цифр 0, 1, 2, 3, если каждая цифра в изображении числа встречается один раз?
Решение. Рассматриваемое число может быть представлено как некоторая перестановка из цифр 0, 1, 2, 3, в которой первая цифра отлична от нуля. Так как число перестановок из четырех цифр равно P4=4! и из них 3! перестановок начинаются с нуля, то искомое количество равно
Пример 5.3. Сколькими способами можно посадить за круглый стол n мужчин и n женщин так, чтобы никакие два лица одного пола не сидели рядом?
Решение. Естественно предположить, что как мужчины, так и женщины различимы. Предположим также, что места за столом также различимы. Пронумеруем их. Если женщины займут чётные места n! способами, то мужчины будут занимать нечётные места тоже n! способами и наоборот. По правилу умножения получаем .
Если места за столом неразличимы, то стол можно поворачивать на одно место, то при этом расположение сидящих не изменится (такая ситуация имеет место, например, на карусели). Поскольку имеется n способов расположения стола относительно сидящих, то предыдущий результат нужно разделить на n.
Вопрос. Сколькими способами можно посадить за круглый стол n супружеских пар, если супруги должны сидеть рядом?
5.1. Сколькими способами можно обить 6 стульев тканью, если имеются ткани 6 различных цветов и все стулья должны быть разного цвета.
Ответ: .
5.2. Дачник выделил на своём участке семь грядок для выращивания овощей, т. к. хочет иметь свои помидоры, огурцы, перец, лук, чеснок, салат и кабачки. Каждый вид должен иметь отдельную грядку. Сколькими способами он может расположить грядки для посадки?
Ответ: .
5.3. Пассажирский поезд состоит из трех багажных вагонов и восьми купированных. Сколькими способами можно сформировать состав, если багажные вагоны должны находиться в его начале?
Ответ: .
5.4. В первенстве края по футболу участвуют 11 команд. Сколько существует различных способов распределения мест в таблице розыгрыша, если на первое место могут претендовать только 4 определенные команды?
Ответ:
5.5. Сколькими способами можно упорядочить множество <1,2,3,…,2n>так, чтобы каждое чётное число стояло на чётном месте?
Ответ: .
5.6. Четыре мальчика и четыре девочки рассаживаются в ряд на восемь подряд расположенных мест, причем мальчики садятся на четные места, а девочки – на нечетные. Сколькими способами они могут это сделать?
Ответ: .
5.7. Сколькими способами можно посадить за круглый стол трех мужчин и трех женщин так, чтобы никакие два лица одного пола не сидели рядом?
Ответ: .
5.8. На собрании должны выступить 5 человек: А, Б, В, Г, Д. Сколькими способами можно расположить их в списке ораторов, если Б не должен выступать до того, как выступил А? Решите эту же задачу, если Б должен выступить сразу после А.
Методика обучения решению комбинаторных задач (стр. 9 из 15)
7. Имеется девять различных книг, четыре из которых – учебники. Сколькими способами можно расставить эти книги на полке так, чтобы все учебники стояли рядом?
Решение: Сначала будем рассматривать учебники как одну книгу. Тогда на полке надо расставить не 9, а 6 книг это можно сделать Р6 способами. В каждой из полученных комбинаций можно выполнить Р4 перестановок учебников. Значит, искомое число способов расположения книг на полке равно произведению Р6·Р4 = 6! ·4! = 720·24 = 17280.
Ответ: 17280 способов.
8. Сколькими способами 9 человек могут встать в очередь в театральную кассу?
Решение: Число способов равно числу перестановок из 9 элементов.
Ответ: 362880 способов.
9. В расписании на понедельник шесть уроков: алгебра, геометрия, биология, история, физкультура, химия. Сколькими способами можно составить расписание на этот день так, чтобы два урока математики (алгебра и геометрия) стояли рядом?
Решение: Рассмотрим алгебру и геометрию как один урок. Тогда расписание надо составить не из 6, а из 5 уроков – Р5 способов. В каждой из полученных комбинаций можно выполнить Р2 перестановки алгебры и геометрии. Значит, искомое число способов составления расписания:
Ответ: 240 способов.
7. Подведение итогов. Итак, вы познакомились с некоторыми правилами комбинаторики и применили их при решении задач. Какие это правила?
8. Домашнее задание:
1. В кафе имеются три первых блюда, пять вторых блюд и два третьих. Сколькими способами посетитель кафе может выбрать обед, состоящий из первого, второго и третьего блюд?
Решение. Первое блюдо можно выбрать 3 способами. Для каждого выбора первого блюда существует 5 возможностей выбора второго блюда. Значит, первые два блюда можно выбрать 3·5 способами. Наконец, для каждого выбора третьего блюда, т.е. существует 3·5·2 способов составления обеда из трех букв. Итак, обед из трех букв может быть составлен 30 способами.
2. Курьер должен разнести пакеты в 7 различных учреждений. Сколько маршрутов он может выбрать?
Решение: Число маршрутов равно числу перестановок из 7 элементов.
Ответ: 5040 маршрутов.
3. Имеется девять различных книг, четыре из которых – учебники. Сколькими способами можно расставить эти книги на полке так, чтобы все учебники стояли рядом?
Решение: Сначала будем рассматривать учебники как одну книгу. Тогда на полке надо расставить не 9, а 6 книг это можно сделать Р6 способами. В каждой из полученных комбинаций можно выполнить Р4 перестановок учебников. Значит, искомое число способов расположения книг на полке равно произведению Р6·Р4 = 6! ·4! = 720·24 = 17280.
4. Вычислите значение дроби:
III. Контролирующий этап. Повторное проведение и обработка тестов на психодиагностику познавательных процессов, оценку мышления у школьников. Повторное задание на выборочное решение задач. Обработка результатов и сравнение с результатами констатирующего этапа.
Проведение психодиагностического теста на исследование гибкости мышления.
Кол-во уч-ся по списку | Кол-во уч-ся, выполнивших тест | Показатель гибкости мышления (кол-во составленных слов) | |||
Высокий (21 и более) | Средний (13-20) | Низкий (7-12) | |||
31 | 29 | 14 | 12 | 1 |
Сравнение результатов с результатами констатирующего этапа представлены в диаграмме. Показатель гибкости мышления учащихся значительно увеличился.
Проведение психодиагностического теста на изучение логической памяти.
Кол-во уч-ся по списку | Кол-во уч-ся, выполнивших тест | Показатель развития логической памяти | ||
Высокий | Средний | Низкий | ||
31 | 29 | 13 | 15 | 1 |
Сравнение результатов с результатами констатирующего этапа представлено в диаграмме. Показатель развития логической памяти учащихся значительно увеличился – большее количество учащихся справилось с заданием верно.
Задания на выборочное решение задач. Учащимся предлагается три задачи и дается задание: решить две из них (при желании – три).
Задача 1. В первый день магазин продал 32% имевшегося ситца, а во второй день 7%. После этого осталось 305 м. сколько ситца поступило в магазин?
Решение: 1) 32+7=39 (%)-продали за 2 дня
2) 100-39=61 (%) – осталось.
3)305:0,61=500 (м) – ситца поступило в магазин
Ответ: 500 м ситца поступило в магазин.
Задача 2. Сколькими способами 5 мальчиков и 5 девочек могут занять в театре в одном ряду места с 1 по 10? Сколькими способами они могут это сделать, если мальчики будут сидеть на нечетных местах, а девочки – на четных?
Решение. Если мальчики и девочки сядут в один ряд в произвольном порядке, то это можно сделать Р10=10!=3628800 способами. Если мальчики сядут на нечетные места, то существуют Р5 способов их расположения. Столькими же способами могут расположиться девочки на четных местах. Каждому способу расположения мальчиков соответствует Р5 способов расположения девочек.
Значит, расположиться так, что мальчики будут сидеть на нечетных местах, а девочки – на четных, можно Р5·Р5=5! ·5!=120·120=14400 способами.
Задача 3. В коробке 2 красных, 4 желтых, 3 зеленых кубика. Вытаскиваем наугад 5 кубиков. Какие из следующих событий невозможные, какие – случайные, а какие – достоверные:
Событие А – невозможное: нельзя вынуть из коробки пять кубиков одного цвета, так как в ней каждого цвета меньше пяти кубиков.
Событие В – тоже невозможное: кубики в коробке трех цветов, а вынимаем пять.
Событие С – достоверное: ведь все пять кубиков, как мы уже выяснили не могут быть одного цвета, поэтому среди них обязательно есть кубики хотя бы двух цветов.
Событие D – случайное.
Кол-во уч-ся по списку | Кол-во уч-ся, выполнивших задание | 3 задачи | 1-2 задачи | 1-3 задачи | 2-3 задачи |
31 | 29 | 13 | 7 | 6 | 3 |
Сравнение результатов с констатирующим этапом представлено в диаграмме.
Большее количество учащихся решило все три задачи верно, в том числе задачи на комбинаторику и вероятность, что говорит об успешности формирующего этапа эксперимента.
Значит, возможно сформировать первоначальное представление о вероятности и научить решать комбинаторные задачи учащихся 5-6 классов, используя методы проблемного обучения, занимательные задачи, задачи, содержащие жизненные ситуации и тем самым повысить показатель логической памяти и гибкости мышления у учащихся 5-6 классов.
Исследуя тему «Методика обучения решению комбинаторных задач и формирование первичного представления о вероятности» проанализировали научно-методическую литературу, выявили уровень логического мышления учащихся 5-6 классов основной школы. Так же изучили психологические особенности учащихся 5-6 классов основной школы, изучили методику ознакомления учащихся с задачами на комбинаторику. Разработаны фрагменты уроков.
Цель исследования выполнена – изучили методику обучения решению комбинаторных задач и задач на вероятность в 5-6 классах основной школы.
Гипотеза, положенная в основу исследования подтверждается – возможно сформировать первоначальное представление о вероятности и научить решать комбинаторные задачи учащихся 5-6 классов, используя методы проблемного обучения, занимательные задачи.
Библиография
1. Бардиер Г.Л. «Тонкости психологической помощи детям», Издательство Генезис, М., 2002.
2. Бунимович Е.А., Булычев В.А. Вероятность и статистика. Пособие для общеобразовательных учебных заведений. – М.: Дрофа, 2002.
3. Бунимович Е.А., Булычев В.А. Основы статистики и вероятность. 5-9 кл.: Пособие для общеобразовательных учреждений – М.: Дрофа, 2004.
4. Вентцель Е.С., Овчаров Л.А. Задачи и упражнения по теории вероятностей: Учебное пособие для студ.втузов – 5 изд., испр. – М.: Издательский центр «Академия», 2003.
5. Выготский Л.С. Воображение и творчество в детском возрасте. Спб.: Союз, 1997.
6. Дорофеев Г.В. Петерсон А.Г. Математика. 5-й класс. Часть 1: Учеб. для общеобразоват. учеб.заведений. – М.: издательство «Ювента», 2002.
7. Дорофеев Г.В. Петерсон А.Г. Математика. 5-й класс. Часть 2: Учеб. для общеобразоват. учеб.заведений. – М.: издательство «Ювента», 2002.
Имеется 9 различных книг 4 из которых учебники сколькими способами можно расставить эти книги
Элементы комбинаторики 9 класс
презентация к уроку по алгебре (9 класс) по теме
Примеры комбинаторных задач Задачи , решая которые приходится составлять различные комбинации из конечного числа элементов и подсчитывать число комбинаций , называются комбинаторными Раздел математики , в котором рассматриваются подобные задачи, называют комбинаторикой Слово «комбинаторика» от латинского combinare — «соединять , сочетать»
Пример 1 Из группы теннисистов, в которую входят четыре человека-Антонов, Григорьев , Сергеев и Федоров , тренер выделяет пару для участия в соревнованиях . Сколько существует вариантов выбора такой пары? АГ, АС, АФ ГС, ГФ СФ Значит, всего существует шесть вариантов выбора Способ рассуждений , которым мы воспользовались , называют перебором возможных вариантов
Пример 2 Сколько трехзначных чисел можно составить из цифр 1, 3, 5, 7 ,используя в записи числа каждую из них не более одного раза? Чтобы ответить на вопрос задачи , выпишем все такие числа . Полученные результаты запишем в четыре строки , в каждой из которых шесть чисел: 135 137 153 157 173 175 315 317 351 357 371 375 513 517 531 537 571 573 713 715 731 735 751 753
Способ второй Проведенный перебор вариантов проиллюстрирован на схеме Такую схему называют деревом возможных вариантов
Способ третий Первую цифру можно выбрать четырьмя способами . Так как после выбора первой цифры останутся три , то вторую цифру можно выбрать уже тремя способами. Наконец , третью цифру можно выбрать двумя способами. Следовательно , общее число искомых чисел равно произведению 4*3*2,т.е.24 Использовалось комбинаторное правило умножения: Пусть имеется п элементов и требуется выбрать из них один за другим k элементов. Если первый элемент можно выбрать п1 способами, после чего второй элемент можно выбрать п2 способами из оставшихся, затем третий элемент можно выбрать п3 способами из оставшихся и т. д., то число способов, которыми могут быть выбраны все k элементов, равно произведению п1 · п2 · п2 · … · пk .
Пример 3 Из города А в город В ведут две дороги, из города В в город С – три дороги , из города С до пристани-две дороги . Туристы хотят проехать из города А через В и С к пристани . Сколькими способами они могут выбрать маршрут? Решение: 2*3*2=12
Задачи 1. В кафе предлагают два первых блюда :борщ , рассольник-и четыре вторых блюда: гуляш, котлеты, сосиски, пельмени. Укажите все обеды из двух блюд, которые может заказать посетитель . Построить дерево возможных вариантов 2. Стадион имеет четыре входа: А, В, С, D . Укажите все возможные способы, какими посетитель может войти через один вход, а выйти через другой. Сколько таких способов? Ответ:12 способов 3. Используя цифры 0,2,4,6 составьте все возможные трехзначные числа, в которых цифры не повторяются.
Задачи 4. В шахматном турнире участвуют 9 человек. Каждый из них сыграл с каждым по одной партии. Сколько всего партий было сыграно? Ответ:36 партий 5. При встрече 8 человек обменялись рукопожатиями. Сколько всего было сделано рукопожатий? Ответ:28 рукопожатий 6. Учащиеся 9 класса решили обменяться фотографиями. Сколько фотографий для этого потребуется, если в классе 24 учащихся? Ответ:552 фотографии
Задачи 7. В кафе имеются три первых блюда , пять вторых блюд и два третьих. Сколькими способами посетитель кафе может выбрать обед , состоящий из первого , второго и третьего блюд? Ответ:30 способов 8. Петр решил пойти на новогодний карнавал в костюме мушкетера. В ателье проката ему предложили на выбор различные по фасону и цвету предметы: пять видов брюк , шесть камзолов , три шляпы , две пары сапог . Сколько различных карнавальных костюмов можно составить из этих предметов? Ответ:180 костюмов
Перестановки Простейшими комбинациями , которые можно составить из элементов конечного множества , являются перестановки Число перестановок из n элементов обозначают символом Р n( читается «Р из n ») Для произведения первых n натуральных чисел используют специальное обозначение: n! ( читается n факториал) 2!=2; 5!=120; 1!=1
Примеры задач Таким образом , число всевозможных перестановок из n элементов вычисляется по формуле: Р n = n ! Пример 1 . Сколькими способами могут быть расставлены 8 участниц финального забега на восьми беговых дорожках? Р 8 =8!=40320 Пример 2 . Сколько различных четырехзначных чисел, в которых цифры не повторяются, можно составить из цифр 0, 2, 4, 6? Из цифр 0,2,4,6 можно получить Р 4 перестановок. Из этого числа надо исключить те перестановки , которые начинаются с 0.Получаем: Р 4 -Р 3 =4!-3!=18
Пример 3. Имеется 9 различных книг, четыре из которых- учебники . Сколькими способами можно расставить эти книги на полке так , чтобы все учебники стояли рядом? Сначала будем рассматривать учебники как одну книгу. Тогда на полке надо расставить не 9,а 6 книг . Это можно сделать Р 6 способами. В каждой из полученных комбинаций можно выполнить Р 4 перестановок учебников. Значит , искомое число способов расположения книг на полке равно произведению Р 6 *Р 4 . Получаем: Р 6 *Р 4 =6!*4!=720*24=17280
Задачи 1. Сколькими способами 4 человека могут разместиться на четырехместной скамейке? Ответ:24 2. Курьер должен разнести пакеты в 7 различных учреждений. Сколько маршрутов может он выбрать? Ответ:5040 3. Сколько шестизначных чисел(без повторения цифр) можно составить из цифр: а)1,2,5,6,7,8; б)0,2,5,6,7,8 ? Ответ : а)720;б)600 4. В расписании на понедельник шесть уроков:алгебра,геометрия,биология,история,физкультура,химия.Сколькими способами можно составить расписание уроков на этот день так , чтобы два урока математики стояли рядом? Ответ:240
Задачи 5. Делится ли число 14! На: А)168; б)136;в)147;г)132? 6. 7. Ответ на 6) :15; 1 /90 ; 1722; 40
Проверочная работа 1 вариант 2 вариант 1. Комбинаторные задачи 2. Способы решения комбинаторных задач 3. Вычислить 1. Перестановки , формула 2. Комбинаторика 3.Вычислить
Методика обучения решению комбинаторных задач (стр. 9 из 15)
7. Имеется девять различных книг, четыре из которых – учебники. Сколькими способами можно расставить эти книги на полке так, чтобы все учебники стояли рядом?
Решение: Сначала будем рассматривать учебники как одну книгу. Тогда на полке надо расставить не 9, а 6 книг это можно сделать Р6 способами. В каждой из полученных комбинаций можно выполнить Р4 перестановок учебников. Значит, искомое число способов расположения книг на полке равно произведению Р6·Р4 = 6! ·4! = 720·24 = 17280.
Ответ: 17280 способов.
8. Сколькими способами 9 человек могут встать в очередь в театральную кассу?
Решение: Число способов равно числу перестановок из 9 элементов.
Ответ: 362880 способов.
9. В расписании на понедельник шесть уроков: алгебра, геометрия, биология, история, физкультура, химия. Сколькими способами можно составить расписание на этот день так, чтобы два урока математики (алгебра и геометрия) стояли рядом?
Решение: Рассмотрим алгебру и геометрию как один урок. Тогда расписание надо составить не из 6, а из 5 уроков – Р5 способов. В каждой из полученных комбинаций можно выполнить Р2 перестановки алгебры и геометрии. Значит, искомое число способов составления расписания:
Ответ: 240 способов.
7. Подведение итогов. Итак, вы познакомились с некоторыми правилами комбинаторики и применили их при решении задач. Какие это правила?
8. Домашнее задание:
1. В кафе имеются три первых блюда, пять вторых блюд и два третьих. Сколькими способами посетитель кафе может выбрать обед, состоящий из первого, второго и третьего блюд?
Решение. Первое блюдо можно выбрать 3 способами. Для каждого выбора первого блюда существует 5 возможностей выбора второго блюда. Значит, первые два блюда можно выбрать 3·5 способами. Наконец, для каждого выбора третьего блюда, т.е. существует 3·5·2 способов составления обеда из трех букв. Итак, обед из трех букв может быть составлен 30 способами.
2. Курьер должен разнести пакеты в 7 различных учреждений. Сколько маршрутов он может выбрать?
Решение: Число маршрутов равно числу перестановок из 7 элементов.
Ответ: 5040 маршрутов.
3. Имеется девять различных книг, четыре из которых – учебники. Сколькими способами можно расставить эти книги на полке так, чтобы все учебники стояли рядом?
Решение: Сначала будем рассматривать учебники как одну книгу. Тогда на полке надо расставить не 9, а 6 книг это можно сделать Р6 способами. В каждой из полученных комбинаций можно выполнить Р4 перестановок учебников. Значит, искомое число способов расположения книг на полке равно произведению Р6·Р4 = 6! ·4! = 720·24 = 17280.
4. Вычислите значение дроби:
III. Контролирующий этап. Повторное проведение и обработка тестов на психодиагностику познавательных процессов, оценку мышления у школьников. Повторное задание на выборочное решение задач. Обработка результатов и сравнение с результатами констатирующего этапа.
Проведение психодиагностического теста на исследование гибкости мышления.
Кол-во уч-ся по списку | Кол-во уч-ся, выполнивших тест | Показатель гибкости мышления (кол-во составленных слов) | |||
Высокий (21 и более) | Средний (13-20) | Низкий (7-12) | |||
31 | 29 | 14 | 12 | 1 |
Сравнение результатов с результатами констатирующего этапа представлены в диаграмме. Показатель гибкости мышления учащихся значительно увеличился.
Проведение психодиагностического теста на изучение логической памяти.
Кол-во уч-ся по списку | Кол-во уч-ся, выполнивших тест | Показатель развития логической памяти | ||
Высокий | Средний | Низкий | ||
31 | 29 | 13 | 15 | 1 |
Сравнение результатов с результатами констатирующего этапа представлено в диаграмме. Показатель развития логической памяти учащихся значительно увеличился – большее количество учащихся справилось с заданием верно.
Задания на выборочное решение задач. Учащимся предлагается три задачи и дается задание: решить две из них (при желании – три).
Задача 1. В первый день магазин продал 32% имевшегося ситца, а во второй день 7%. После этого осталось 305 м. сколько ситца поступило в магазин?
Решение: 1) 32+7=39 (%)-продали за 2 дня
2) 100-39=61 (%) – осталось.
3)305:0,61=500 (м) – ситца поступило в магазин
Ответ: 500 м ситца поступило в магазин.
Задача 2. Сколькими способами 5 мальчиков и 5 девочек могут занять в театре в одном ряду места с 1 по 10? Сколькими способами они могут это сделать, если мальчики будут сидеть на нечетных местах, а девочки – на четных?
Решение. Если мальчики и девочки сядут в один ряд в произвольном порядке, то это можно сделать Р10=10!=3628800 способами. Если мальчики сядут на нечетные места, то существуют Р5 способов их расположения. Столькими же способами могут расположиться девочки на четных местах. Каждому способу расположения мальчиков соответствует Р5 способов расположения девочек.
Значит, расположиться так, что мальчики будут сидеть на нечетных местах, а девочки – на четных, можно Р5·Р5=5! ·5!=120·120=14400 способами.
Задача 3. В коробке 2 красных, 4 желтых, 3 зеленых кубика. Вытаскиваем наугад 5 кубиков. Какие из следующих событий невозможные, какие – случайные, а какие – достоверные:
Событие А – невозможное: нельзя вынуть из коробки пять кубиков одного цвета, так как в ней каждого цвета меньше пяти кубиков.
Событие В – тоже невозможное: кубики в коробке трех цветов, а вынимаем пять.
Событие С – достоверное: ведь все пять кубиков, как мы уже выяснили не могут быть одного цвета, поэтому среди них обязательно есть кубики хотя бы двух цветов.
Событие D – случайное.
Кол-во уч-ся по списку | Кол-во уч-ся, выполнивших задание | 3 задачи | 1-2 задачи | 1-3 задачи | 2-3 задачи |
31 | 29 | 13 | 7 | 6 | 3 |
Сравнение результатов с констатирующим этапом представлено в диаграмме.
Большее количество учащихся решило все три задачи верно, в том числе задачи на комбинаторику и вероятность, что говорит об успешности формирующего этапа эксперимента.
Значит, возможно сформировать первоначальное представление о вероятности и научить решать комбинаторные задачи учащихся 5-6 классов, используя методы проблемного обучения, занимательные задачи, задачи, содержащие жизненные ситуации и тем самым повысить показатель логической памяти и гибкости мышления у учащихся 5-6 классов.
Исследуя тему «Методика обучения решению комбинаторных задач и формирование первичного представления о вероятности» проанализировали научно-методическую литературу, выявили уровень логического мышления учащихся 5-6 классов основной школы. Так же изучили психологические особенности учащихся 5-6 классов основной школы, изучили методику ознакомления учащихся с задачами на комбинаторику. Разработаны фрагменты уроков.
Цель исследования выполнена – изучили методику обучения решению комбинаторных задач и задач на вероятность в 5-6 классах основной школы.
Гипотеза, положенная в основу исследования подтверждается – возможно сформировать первоначальное представление о вероятности и научить решать комбинаторные задачи учащихся 5-6 классов, используя методы проблемного обучения, занимательные задачи.
Библиография
1. Бардиер Г.Л. «Тонкости психологической помощи детям», Издательство Генезис, М., 2002.
2. Бунимович Е.А., Булычев В.А. Вероятность и статистика. Пособие для общеобразовательных учебных заведений. – М.: Дрофа, 2002.
3. Бунимович Е.А., Булычев В.А. Основы статистики и вероятность. 5-9 кл.: Пособие для общеобразовательных учреждений – М.: Дрофа, 2004.
4. Вентцель Е.С., Овчаров Л.А. Задачи и упражнения по теории вероятностей: Учебное пособие для студ.втузов – 5 изд., испр. – М.: Издательский центр «Академия», 2003.
5. Выготский Л.С. Воображение и творчество в детском возрасте. Спб.: Союз, 1997.
6. Дорофеев Г.В. Петерсон А.Г. Математика. 5-й класс. Часть 1: Учеб. для общеобразоват. учеб.заведений. – М.: издательство «Ювента», 2002.
7. Дорофеев Г.В. Петерсон А.Г. Математика. 5-й класс. Часть 2: Учеб. для общеобразоват. учеб.заведений. – М.: издательство «Ювента», 2002.
Презентация к уроку по теме «Перестановки»
Презентация к уроку объяснения нового материала по комбинаторике.
Содержимое разработки
МБОУ «Янишевская основная школа»
Учитель: Зверева Т.И.
Решите задачу:
Антон, Борис и Виктор купили
3 билета на футбол на 1-е, 2-е, 3-е места первого ряда стадиона. Сколькими способами мальчики могут занять эти места?
Решение задачи:
- Может быть такая последовательность:
А Б В А В Б
Может быть и так:
Б В А Б А В
А может быть и так:
В А Б В Б А
Ответ: 6 вариантов
Перестановкой называется множество из n элементов, записанных в определённом порядке.
- Теорема о перестановках элементов конечного множества:
n различных элементов можно расставить по одному на n различных мест ровно n! способами.
Число способов равно числу перестановок
из 3 элементов. По формуле числа перестановок находим, что
Р3=3!= 1 ∙ 2 ∙3 = 6
Решите уравнение :
Пять друзей решили сфотографироваться. Сколькими способами это можно сделать?
В 9 классе в среду 6 уроков: математика, литература,
русский язык, английский язык, биология и физкультура. Сколько вариантов расписания можно составить?
Расставляем предметы по порядку:
Всего вариантов
1 ∙ 2∙ 3 ∙ 4 ∙5 ∙ 6 = 720
Число вариантов
- Имеется девять различных книг, четыре из которых — учебники. Сколькими способами можно расставить эти книги на полке так, чтобы все учебники стояли рядом ?План:
1) учебники = книга
2) Р6 перестановок книг
4) Р4 перестановки учебников
6) Р 6 ∙ Р4
Домашнее задание:
1. Весной мама покупает ребенку много фруктов. Она купила банан, яблоко, апельсин, лимон, грушу и киви. Найдите число возможных вариантов съедания фруктов.
2 . Одиннадцать футболистов строятся перед началом матча. Первым становится капитан, вторым –
вратарь, а остальные – случайным образом.
Сколько существует способов построения?
3. Сколькими способами можно расставить на полке 10 книг, из которых 4 книги одного автора, а остальные – разных авторов, так, чтобы книги одного автора стояли рядом?
До новых встреч
с комбинаторными задачами
Получите свидетельство о публикации сразу после загрузки работы
Получите бесплатно свидетельство о публикации сразу после добавления разработки
Новые олимпиады
Комплекты учителю
Качественные видеоуроки, тесты и практикумы для вашей удобной работы
Вебинары для учителей
Бесплатное участие и возможность получить свидетельство об участии в вебинаре.
Комбинаторика помогите умоляю
1.Ну сначала выбираем одну из 9 (очевидно можно выбрать 9 способами) потом вторую (одну из 8) потом одну 7 и наконецто одну из 6 т. е. 6*7*8*9 способов, теперь нужно разделить на 4 факториал (почему, потому что в числе подсчитанных вариантов может получится, что выбор пал на 1,2,4,6 книги а другой вариант на 2,1,6,4 книги, что то же самое (очевидно что 4 книги можно расставить 4факт разными способами) т. е. (6*7*8*9) / (2*3*4)
2. Если входит определенная книга то считай мы ее сразу выбрали, потом выбор из 8, из 7, и из 6 книг, т. е. 6*7*8 способов, делить на 3 факториал
3. Если она не должна входить то первый выбор состоит из 8 книг (9 минус та которая не нужна) след выбор из 7, из 6 и из 5 книг (надо выбрать 4 книги) и ответ будет 5*6*7*8 способов, еще делить на 4 факториал