Что делать если в дискриминанте нет с
Перейти к содержимому

Что делать если в дискриминанте нет с

  • автор:

Квадратные уравнения. Решение неполных квадратных уравнений.

Квадратные уравнения. Решение неполных квадратных уравнений.

  1. Коэффициент при первой степени переменной равен нулю ().

Уравнение принимает вид:

Квадратные уравнения. Решение неполных квадратных уравнений.

Решим его в общем виде:

Квадратные уравнения. Решение неполных квадратных уравнений.

Квадратные уравнения. Решение неполных квадратных уравнений.

Замечание: уравнение будет иметь корни только в том случае, если , иначе окажется, что квадрат

равен отрицательному числу, а это невозможно.

Квадратные уравнения. Решение неполных квадратных уравнений.

Квадратные уравнения. Решение неполных квадратных уравнений.

Ответ:

Квадратные уравнения. Решение неполных квадратных уравнений.

Квадратные уравнения. Решение неполных квадратных уравнений.

Ответ:

Последний переход сделали потому, что иррациональность в знаменателе оставляют крайне редко.

2. Свободный член равен нулю (с=0).

Уравнение принимает вид:

Квадратные уравнения. Решение неполных квадратных уравнений.

Решим его в общем виде:

Квадратные уравнения. Решение неполных квадратных уравнений.

Произведение двух сомножителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю:

Квадратные уравнения. Решение неполных квадратных уравнений.

1)

Квадратные уравнения. Решение неполных квадратных уравнений.

2)

Квадратные уравнения. Решение неполных квадратных уравнений.

Ответ:

Квадратные уравнения. Решение неполных квадратных уравнений.

Квадратные уравнения. Решение неполных квадратных уравнений.

Ответ:

3. Все коэффициенты, кроме стоящего при квадрате переменной, равны нулю. Уравнение принимает вид:

Квадратные уравнения. Решение неполных квадратных уравнений.

Оно имеет только нулевое решение.

Квадратные уравнения. Решение неполных квадратных уравнений.

Ответ:

А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок:

Приём первый. Не ленитесь перед решением квадратного уравнения привести его к стандартному виду.

Что это означает?

Допустим, после всяких преобразований вы получили вот такое уравнение:

Квадратные уравнения. Решение неполных квадратных уравнений.

Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с. Постройте

пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

Квадратные уравнения. Решение неполных квадратных уравнений.

Избавьтесь от минуса. Как? Надо умножить всё уравнение на -1. Получим:

Квадратные уравнения. Решение неполных квадратных уравнений.

А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример.

Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.

Для решения приведённых квадратных уравнений, т.е. если коэффициент

Для полного квадратного уравнения, в котором a≠1:

делим все уравнение на а:

Квадратные уравнения. Решение неполных квадратных уравнений.Квадратные уравнения. Решение неполных квадратных уравнений.

Квадратные уравнения. Решение неполных квадратных уравнений.

где x 1 и x 2 – корни уравнения.

Приём третий. Если в вашем уравнении есть дробные коэффициенты, — избавьтесь от дробей! Домножьте

уравнение на общий знаменатель.

Вывод. Практические советы:

1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно.

2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением

всего уравнения на -1.

3. Если коэффициенты дробные – ликвидируем дроби умножением всего уравнения на соответствующий

4. Если икс в квадрате – чистый, коэффициент при нём равен единице, решение можно легко проверить по

Неполные квадратные уравнения. Решение неполных квадратных уравнений

Превращение полного квадратного уравнения в неполное выглядит так (для случая \(b=0\)):

неполное квадратное уравнение.png

Для случаев, когда \(с=0\) или когда оба коэффициента равны нулю — всё аналогично.

Обратите внимание, что про равенство нулю \(a\) речи не идет, оно равно нулю быть не может, так как в этом случае уравнение превратиться в линейное :

почему коэффициент а не равен нулю.png

Решение неполных квадратных уравнений

Прежде всего, надо понимать, что неполное квадратное уравнение все-таки является квадратным уравнением , поэтому может быть решено также как и обычное квадратное (через дискриминант ). Для этого просто дописываем недостающий компонент уравнения с нулевым коэффициентом.

Пример: Найдите корни уравнения \(3x^2-27=0\)
Решение:

У нас неполное квадратное уравнение с коэффициентом \(b=0\). То есть, мы можем записать уравнение в следующем виде:

Фактически здесь то же самое уравнение, что и в начале, но теперь его можно решать как обычное квадратное. Сначала выписываем коэффициенты.

Неполные квадратные уравнения

в котором хотя бы один из коэффициентов b или c равен нулю. Следовательно, неполное квадратное уравнение может иметь вид:

ax 2 + bx = 0, если c = 0;
ax 2 + c = 0, если b = 0;
ax 2 = 0, если b = 0 и c = 0.

Решение неполных квадратных уравнений

Чтобы решить уравнение вида ax 2 + bx = 0 , надо разложить левую часть уравнения на множители, вынеся x за скобки:

x(ax + b) = 0.

Произведение может быть равно нулю только в том случае, если один из множителей равен нулю, значит:

x = 0 или ax + b = 0.

Чтобы ax + b было равно нулю, нужно, чтобы

x = — b .
a

Следовательно, уравнение ax 2 + bx = 0 имеет два корня:

x1 = 0 и x2 = — b .
a

Неполные квадратные уравнения вида ax 2 + bx = 0, где b ≠ 0, решаются разложением левой части на множители. Такие уравнения всегда имеют два корня, один из которых равен нулю.

Пример 1. Решите уравнение:

a 2 — 12a = 0.

a 2 — 12a = 0
a(a — 12) = 0
a1 = 0 a — 12 = 0
a2 = 12

Пример 2. Решите уравнение:

7x 2 = x.

Чтобы решить уравнение вида ax 2 + c = 0 , надо перенести свободный член уравнения c в правую часть:

ax 2 = —c, следовательно, x 2 = — c .
a

В этом случае уравнение не будет иметь корней, так как квадратный корень нельзя извлечь из отрицательного числа.

Если данное неполное уравнение будет иметь вид x 2 — c = 0 , то сначала опять переносим свободный член в правую часть и получаем:

x 2 = c.

В этом случае уравнение будет иметь два противоположных корня:

Неполное квадратное уравнение вида ax 2 + c = 0, где c ≠ 0, либо не имеет корней, либо имеет два корня, которые являются противоположными числами.

Пример 1. Решите уравнение:

24 = 2y 2
24 — 2y 2 = 0
-2y 2 = -24
y 2 = 12
y1 = +√ 12 y2 = -√ 12

Пример 2. Решите уравнение:

b 2 — 16 = 0.

b 2 — 16 = 0
b 2 = 16
b1 = 4 b2 = -4

Уравнение вида ax 2 = 0 всегда имеет только один корень: x = 0. Так как a ≠ 0, то из ax 2 = 0 следует, что x 2 = 0, значит, и x = 0. Любое другое значение x не будет являться корнем данного уравнения.

Уравнение дискриминанта где нет c

Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где х – переменная, a, b, c некоторые числа, причем a≠0. Обычно его называют полным квадратным уравнением.

Если в таком уравнении один из коэффициентов b или c равен нулю, либо оба одновременно равны нулю, то такое уравнение называется неполным квадратным уравнением.

Неполное квадратное уравнение при b=0: ax 2 +c=0

Для решения такого вида уравнения надо выполнить перенос коэффициента с в правую часть, затем найти квадрат переменной (делим обе части на одно и то же число), найти два корня уравнения, либо доказать, что корней нет (если х 2 равен отрицательному коэффициенту; знаем, что квадрат любого числа равен только положительному числу).

Пример №1. Решить уравнение:

Выполним перенос числа –45 в правую часть, изменяя знак на противоположный: 5х 2 =45; найдем переменную в квадрате, поделив обе части уравнения на 5: х 2 =9. Видим, что квадрат переменной равен положительному числу, поэтому уравнение имеет два корня, находим их устно, извлекая квадратный корень из числа 9, получим –3 и 3. Оформляем решение уравнения обычным способом:

Ответ: х=±3 или можно записать ответ так: х1=–3, х2=3 (обычно меньший корень записывают первым). Пример №2. Решить уравнение:

Выполним решение уже известным способом: –6х 2 =90. х 2 =–15 Здесь видим, что квадрат переменной равен отрицательному числу, а это значит, что уравнение не имеет корней. Ответ: нет корней. Пример №3. Решить уравнение:

Здесь мы видим в левой части уравнения формулу сокращенного умножения (разность квадратов двух выражений). Поэтому, можем разложить данное выражение на множители, и найти корни уравнения: (х–10)(х+10)=0. Соответственно, вспомним, что произведение двух множителей равно нулю тогда, когда хотя бы один из множителей равен нулю, то есть х–10=0 или х+10=0. Откуда имеем два корня х1=10, х2=–10.

Неполное квадратное уравнение при с=0: ax 2 +bx=0

Данного вида уравнение решается способом разложения на множители – вынесением за скобки переменной. Данное уравнение всегда имеет два корня, один из которых равен нулю. Рассмотрим данный способ на примерах.

Пример №4. Решить уравнение:

Выносим переменную х за скобки: х(х+8)=0. Получаем два уравнения х=0 или х+8=0. Отсюда данное уравнение имеет два корня – это 0 и –8.

Пример №5. Решить уравнение:

Здесь кроме переменной можно вынести за скобки еще и коэффициент 3, который является общим множителем для данных в уравнении коэффициентов. Получим: 3х(х–4)=0. Получаем два уравнения 3х=0 и х–4=0. Соответственно и два корня – нуль и 4.

Неполное квадратное уравнение с коэффициентами b и с равными нулю: ax 2 =0

Данное уравнение при любых значениях коэффициента а будет иметь один корень, равный нулю.

Пример №6. Решить уравнение:

Обе части уравнения делим на (–14) и получаем х 2 =0, откуда соответственно и единственный корень – нуль. Пример №6. Решить уравнение:

Также делим обе части на 23 и получаем х 2 =0. Значит, корень уравнения – нуль.

Неполные квадратные уравнения

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.

  • Если b = 0, то квадратное уравнение принимает вид ax² + 0x+c=0 и оно равносильно ax² + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax² + bx + 0 = 0, иначе его можно написать как ax² + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax² = 0.

Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три формулы неполных квадратных уравнений:

  • ax² = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax² + c = 0, при b = 0;
  • ax² + bx = 0, при c = 0.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Как решить уравнение ax² = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0.

Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.

Пример 1. Решить −5x² = 0.

  1. Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса!

Как решить уравнение ax² + с = 0

Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:

  • перенесем c в правую часть: ax² = — c,
  • разделим обе части на a: x² = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 0, то корни уравнения x² = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = — c/а. Ура, больше у этого уравнения нет корней.

В двух словах

Неполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:

  • не имеет корней при — c/а 0.

Пример 1. Найти решение уравнения 9x² + 4 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 9:

Ответ: уравнение 9x² + 4 = 0 не имеет корней.

Пример 2. Решить -x² + 9 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на -1:

Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3.

Как решить уравнение ax² + bx = 0

Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника.

Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня:

Пример 1. Решить уравнение 2x² — 32x = 0

    Вынести х за скобки

Ответ: х = 0 и х = 16.

Пример 2. Решить уравнение 3x² — 12x = 0

Разложить левую часть уравнения на множители и найти корни:

Дискриминант квадратного уравнения

Дискриминант квадратного уравнения — это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.

Вид уравнения Формула корней Формула
дискриминанта
ax 2 + bx + c = 0 b 2 — 4ac
ax 2 + 2kx + c = 0 k 2 — ac
x 2 + px + q = 0
p 2 — 4q

Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:

Вид уравнения Формула
ax 2 + bx + c = 0 , где D = b 2 — 4ac
ax 2 + 2kx + c = 0 , где D = k 2 — ac
x 2 + px + q = 0 , где D =
, где D = p 2 — 4q

Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:

  1. Если дискриминант больше нуля, то уравнение имеет два корня.
  2. Если дискриминант равен нулю, то уравнение имеет один корень.
  3. Если дискриминант меньше нуля, то уравнение не имеет корней.

Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:

так как она относится к формуле:

,

которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.

Решение квадратных уравнений через дискриминант

Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.

Пример 1. Решить уравнение:

Определим, чему равны коэффициенты:

D = b 2 — 4ac = (-4) 2 — 4 · 3 · 2 = 16 — 24 = -8,

Определим, чему равны коэффициенты:

D = b 2 — 4ac = (-6) 2 — 4 · 1 · 9 = 36 — 36 = 0,

Уравнение имеет всего один корень:

Определим, чему равны коэффициенты:

D = b 2 — 4ac = (-4) 2 — 4 · 1 · (-5) = 16 + 20 = 36,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *